graph_execution_optimizer.py 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import paddle
from paddle.fluid.framework import core
from paddle.fluid import compiler
from .meta_optimizer_base import MetaOptimizerBase
from ..base.private_helper_function import wait_server_ready


def get_build_strategy(dist_strategy):
    build_strategy = paddle.BuildStrategy()
    build_strategy.enable_sequential_execution = \
        dist_strategy.sequential_execution
    build_strategy.remove_unnecessary_lock = True
    build_strategy.fuse_elewise_add_act_ops = \
        dist_strategy.fuse_elewise_add_act_ops
    build_strategy.fuse_bn_act_ops = \
        dist_strategy.fuse_bn_act_ops
    build_strategy.enable_auto_fusion = \
        dist_strategy.enable_auto_fusion
    build_strategy.fuse_relu_depthwise_conv = \
        dist_strategy.fuse_relu_depthwise_conv
    build_strategy.fuse_broadcast_ops = \
        dist_strategy.fuse_broadcast_ops
    build_strategy.sync_batch_norm = \
        dist_strategy.sync_batch_norm
    return build_strategy


def get_execution_strategy(dist_strategy):
    execution_strategy = paddle.ExecutionStrategy()
    execution_strategy.num_threads = \
        dist_strategy.num_threads
    execution_strategy.num_iteration_per_drop_scope = \
        dist_strategy.num_iteration_per_drop_scope
    execution_strategy.num_iteration_per_run = \
        dist_strategy.num_iteration_per_run
    execution_strategy.use_thread_barrier = \
        dist_strategy.use_thread_barrier
    return execution_strategy


class GraphExecutionOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(GraphExecutionOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        # we do not allow meta optimizer to be inner optimizer currently
        self.meta_optimizers_white_list = []

    def _is_graph_out(self):
        return True

    def _can_apply(self):
        """
        Basically, this is PE, and almost all programs can be executed here
        """
        return True

    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        pass

    # should fix the variable 
    def _setup_nccl_op(self, startup_program, main_program):
        trainer_endpoints = self.role_maker.get_trainer_endpoints()
        trainers = trainer_endpoints
        trainer_id = self.role_maker.worker_index()
        current_endpoint = self.role_maker.get_trainer_endpoints()[trainer_id]
        trainer_endpoints_env = ",".join(trainer_endpoints)
        trainers_num = self.role_maker.worker_num()
        trainer_endpoints.remove(current_endpoint)
        if trainer_id == 0:
            wait_server_ready(trainer_endpoints)
        nccl_id_var = startup_program.global_block().create_var(
            name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
        for i in range(1, self.user_defined_strategy.nccl_comm_num):
            startup_program.global_block().create_var(
                name="NCCLID_{}".format(i),
                persistable=True,
                type=core.VarDesc.VarType.RAW)

        if self.user_defined_strategy.hierachical_allreduce:
            for i in range(0, self.user_defined_strategy.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="Hierarchical_inter_NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)
                startup_program.global_block().create_var(
                    name="Hierarchical_exter_NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

        startup_program.global_block().append_op(
            type="gen_nccl_id",
            inputs={},
            outputs={"NCCLID": nccl_id_var},
            attrs={
                "trainers": trainers,
                "trainer_id": trainer_id,
                "nccl_comm_num": self.user_defined_strategy.nccl_comm_num,
                "use_hierarchical_allreduce":
                self.user_defined_strategy.hierachical_allreduce,
                "hierarchical_allreduce_inter_ranks":
                self.user_defined_strategy.hierachical_allreduce_inter_ranks
            })

    def _try_to_compile(self, startup_program, main_program, loss):
        build_strategy = get_build_strategy(self.user_defined_strategy)
        exe_strategy = get_execution_strategy(self.user_defined_strategy)
        node_num = self.role_maker.worker_num()
        if self.role_maker._is_collective:
            assert node_num >= 1, "nccl2 node_num must >= 1, now:{}" % node_num

        if node_num <= 1:
            # local mode
            if self.user_defined_strategy.nccl_comm_num > 1:
                logging.warn("set nccl_comm_num=1 since you only have 1 node.")
            self.user_defined_strategy.nccl_comm_num = 1

            if self.user_defined_strategy.hierachical_allreduce:
                logging.warn(
                    "set hierachical_allreduce=False since you only have 1 node."
                )
            self.user_defined_strategy.hierachical_allreduce = False

        sync_allreduce = self.user_defined_strategy.sync_nccl_allreduce
        if sync_allreduce:
            exe_strategy.num_threads = self.user_defined_strategy.nccl_comm_num + 1
            if self.user_defined_strategy.hierachical_allreduce:
                exe_strategy.num_threads = 2 * self.user_defined_strategy.nccl_comm_num + 1
            if exe_strategy.num_threads > 4:
                logging.warn(
                    "if you use hierachical_allreduce or "
                    "with multi nccl comm, please export FLAGS_sync_nccl_allreduce = 0"
                )

        # TODO(guru4elephant): should be an independent optimizer
        sync_batch_norm = self.user_defined_strategy.sync_batch_norm
        if sync_batch_norm:
            self.user_defined_strategy.nccl_comm_num = 1
            self.user_defined_strategy.hierachical_allreduce = False
            exe_strategy.num_threads = 1
            logging.warn(
                "use sync_batch_norm will hang when set num_threads > 1, so "
                "set num_threads=1, nccl_comm_num=1, hierachical_allreduce=False."
            )

        # TODO(guru4elephant): should be an independent optimizer
        self._setup_nccl_op(startup_program, main_program)

        build_strategy.num_trainers = self.role_maker.worker_num()
        build_strategy.trainer_id = self.role_maker.worker_index()
        build_strategy.trainers_endpoints = self.role_maker.get_trainer_endpoints(
        )
        build_strategy.enable_backward_optimizer_op_deps = True

        self._compiled_program = compiler.CompiledProgram(main_program)

        self._compiled_program.with_data_parallel(
            loss_name=loss.name,
            build_strategy=build_strategy,
            exec_strategy=exe_strategy,
            share_vars_from=None)

        return self._compiled_program

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        if startup_program == None:
            startup_program = paddle.default_startup_program()
        compiled_program = self._try_to_compile(startup_program,
                                                loss.block.program, loss)
        loss.block.program.graph = compiled_program

        # just return self.optimizer_ops and self.param_grads
        return None, None