fleet_base.py 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16 17 18 19 20
import paddle
from .strategy_compiler import StrategyCompiler
from .meta_optimizer_factory import MetaOptimizerFactory
from .runtime_factory import RuntimeFactory
from .util_factory import UtilFactory
21

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
__all__ = ['Fleet']


class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
    Please reference the https://github.com/PaddlePaddle/Fleet for details


    Returns:
        Fleet: A Fleet instance

    Examples:
        .. code-block:: python

            import paddle.fleet as fleet
            import paddle.fluid.incubate.fleet.base.role_maker as role_maker
            role = role_maker.PaddleCloudRoleMaker(is_collective=True)
            fleet.init(role)
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
            if fleet.is_first_worker():
                print("this is first worker")
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
    """

    def __init__(self):
        self._runtime_handle = None
        self._util = None

    def init(self, role_maker):
        self._role_maker = role_maker
        self.strategy_compiler = StrategyCompiler()

    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
        
        """
        return self._role_maker.is_first_worker()

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
        """
        return self._role_maker.worker_index()

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
        """
        return self._role_maker.worker_num()

    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
        """
        return self._role_maker.is_worker()

    def worker_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
        """
        '''
        if to_string:
            return ",".join(self._role_maker.get_trainer_endpoints())
        else:
            return self._role_maker.get_trainer_endpoints()
        '''
        return ["127.0.0.1:1001", "127.0.0.1:1002"]

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
        """
        return len(self._role_maker.get_pserver_endpoints())

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
        """
        return self._role_maker.server_index()

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
        """
        '''
        if to_string:
            return ",".join(self._role_maker.get_pserver_endpoints())
        else:
            return self._role_maker.get_pserver_endpoints()
        '''
        return ["127.0.0.1:1001", "127.0.0.1:1002"]

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
        """
        return self._role_maker.is_server()

    @property
    def util(self):
        """
        Utility functions that can be used under certain runtime
        return util
        """
        return self._util

    @util.setter
    def util(self, util):
        """
        Set Utility functions for userd-defined runtime
        set util
        """
        self._util = util

    def barrier_worker(self):
        """
        barrier between workers
        """
        self._role_maker.barrier_worker()

    def init_worker(self):
        """
        init worker
        """
        assert self._runtime_handle is not None
        self._runtime_handle._init_worker()

    def init_server(self, model_dir=None):
        """
        init server
        """
        assert self._runtime_handle is not None
        self._runtime_handle._init_server()

    def run_server(self):
        """
        run server
        """
        assert self._runtime_handle is not None
        self._runtime_handle._run_server()

    def stop_worker(self):
        """
        stop worker
        """
        assert self._runtime_handle is not None
        self._runtime_handle._stop_worker()

    def distributed_optimizer(self, optimizer, strategy):
        """
        distirbuted_optimizer
        Returns:
            Fleet instance with minimize interface like optimizers

        Examples:
            .. code-block:: python
            import paddle.fleet as fleet
            import paddle.fluid.incubate.fleet.base.role_maker as role_maker
            role = role_maker.PaddleCloudRoleMaker(is_collective=True)
            fleet.init(role)
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
        """
        self.user_defined_optimizer = optimizer
        self.user_defined_strategy = strategy
        return self

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to 
            indicate program pruning. If so, the program will be pruned by ``feed`` and 
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
            import paddle
            import paddle.fleet as fleet
            import paddle.fluid.incubate.fleet.base.role_maker as role_maker

            fc_1 = paddle.layers.fc(input=input_x, size=hid_dim, act='tanh')
            fc_2 = paddlen.layers.fc(input=fc_1, size=hid_dim, act='tanh')
            prediction = paddle.layers.fc(input=[fc_2], size=label_dim, act='softmax')
            cost = paddle.layers.cross_entropy(input=prediction, label=input_y)
            avg_cost = paddle.layers.mean(x=cost)

            role = role_maker.PaddleCloudRoleMaker(is_collective=True)
            fleet.init(role)
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
            optimizer.minimize(avg_cost)

            # for more examples, please reference https://github.com/PaddlePaddle/Fleet

        """
        # cache original feed forward program
        self.origin_main_program = loss.block.program
        if startup_program == None:
            self.origin_startup_program = \
                paddle.default_startup_program().clone(for_test=False)
            startup_program = paddle.default_startup_program()
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)

        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
                                self.user_defined_strategy)
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
            if opt._can_apply() and opt._is_graph_out():
                valid_graph_optimizer_list.append(opt)
        # combine recalled meta optimizers to be a valid meta optimizer
        meta_optimizer, graph_optimizer, final_dist_strategy = \
                self.strategy_compiler.generate_optimizer(
                    loss, self._role_maker, self.user_defined_optimizer,
                    self.user_defined_strategy, valid_optimizer_list,
                    valid_graph_optimizer_list)
        optimize_ops = []
        params_grads = []
        if meta_optimizer:
            optimize_ops, params_grads = meta_optimizer.minimize(
                loss,
                startup_program=startup_program,
                parameter_list=parameter_list,
                no_grad_set=no_grad_set)

        if graph_optimizer:
            optimizer_ops, params_grads = graph_optimizer.minimize(
                loss,
                startup_program=startup_program,
                parameter_list=parameter_list,
                no_grad_set=no_grad_set)
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore

        if self._runtime_handle is None:
            self._runtime_handle = RuntimeFactory()._create_runtime(
                final_dist_strategy, self._role_maker, optimize_ops,
                params_grads)

        if self._util is None:
            self._util = UtilFactory()._create_util(final_dist_strategy,
                                                    self._role_maker,
                                                    optimize_ops, params_grads)

        return optimize_ops, params_grads