partial_program.py 37.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
16

17
import paddle
18
from paddle.fluid import framework, backward, core, program_guard
19 20 21 22
from paddle.fluid.executor import (
    _is_enable_standalone_executor,
    _is_dy2st_enable_standalone_executor,
)
23
from paddle.fluid.dygraph import layers
24
from paddle.fluid.dygraph.base import switch_to_static_graph
25
from paddle.fluid.dygraph.dygraph_to_static import logging_utils
26 27 28
from paddle.fluid.dygraph.dygraph_to_static.return_transformer import (
    RETURN_NO_VALUE_MAGIC_NUM,
)
29 30
from paddle.fluid.layers.utils import flatten
from paddle.fluid.layers.utils import pack_sequence_as
31 32
from paddle.fluid.layers.utils import _hash_with_id
from paddle.fluid.compiler import BuildStrategy
33
from paddle.fluid.framework import _apply_pass
34 35 36 37 38 39 40 41 42 43 44
from paddle.fluid.contrib.mixed_precision.decorator import (
    AutoMixedPrecisionLists,
)
from paddle.fluid.contrib.mixed_precision.fp16_utils import (
    rewrite_program,
    cast_model_to_fp16,
)
from paddle.fluid.dygraph.amp.auto_cast import (
    _in_amp_guard,
    _in_pure_fp16_guard,
)
45
from paddle import _legacy_C_ops
46

47 48 49 50 51 52 53 54 55

class NestSequence(object):
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
56
        self.__input_list = self.tolist()
57 58 59 60 61 62 63 64 65 66 67 68 69
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
        return flatten(self.__raw_input)

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
70
        assert len(self.__input_list) == len(value_list)
71 72 73 74
        return pack_sequence_as(self.__raw_input, value_list)

    def _get_var_ids(self):
        var_ids = []
75
        for idx, var in enumerate(self.__input_list):
76
            if isinstance(
77 78
                var, (framework.Variable, core.VarBase, core.eager.Tensor)
            ):
79 80 81 82 83 84 85 86 87 88
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
89
            for var in self.__input_list:
90
                if not isinstance(
91 92
                    var, (framework.Variable, core.VarBase, core.eager.Tensor)
                ):
93 94
                    warning_types.add(type(var))
            if warning_types:
95
                logging_utils.warn(
96 97
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
98 99 100 101
                    "what we first saw. Please try to return them as tensor.".format(
                        list(warning_types)
                    )
                )
102 103 104 105 106 107

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
108
        return self.__input_list[item]
109

110

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
class LazyInitialized(object):
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


def _change_is_test_status(program, is_test):
    # change all `is_test` attributes
    for block in program.blocks:
        for op in block.ops:
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)
    return program


134
class PartialProgramLayer:
135 136 137 138 139
    """
    PartialProgramLayer wraps all the ops from layers decorated by `@declarative`
    and execute them as a static subgraph.

    .. note::
140 141 142
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
143 144 145 146 147 148 149 150 151 152 153 154
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
        inputs(list[Variable]): The input list of the decorated function by `@declarative`.
        outputs(list[Variable]): The output list of the decorated function by `@declarative`.
        parameters(list[VarBase]|None): All trainable parameters included in the program. Default None.

    Returns:
        Layer: A Layer object that run all ops internally in static mode.
    """

155 156 157
    def __init__(
        self, main_program, inputs, outputs, parameters=None, **kwargs
    ):
158
        super().__init__()
159 160
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
161
        self._params = parameters if parameters is not None else []
162

163 164 165
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

166
        self._origin_main_program = self._verify_program(main_program)
167 168 169
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
170
        # Set default mode to train
171
        self.training = True
172

173 174 175 176
        custom_white_list, custom_black_list = None, None
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
177
        # For AMP training
178 179
        self._amp_list = AutoMixedPrecisionLists(
            custom_white_list=custom_white_list,
180 181
            custom_black_list=custom_black_list,
        )
182

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        # program_id -> list(scope)
        self._scope_cache = {}

    def _get_scope(self, program_id=None, use_scope_cache=False):
        if use_scope_cache:
            if program_id not in self._scope_cache:
                scope = core.Scope()
                self._scope_cache[program_id] = [scope]
                return scope
            else:
                for scope in self._scope_cache[program_id]:
                    if scope._can_reuesd:
                        return scope
                scope = core.Scope()
                self._scope_cache[program_id].append(scope)
                return scope
        else:
            return core.Scope()

202 203 204 205 206 207 208 209
    @LazyInitialized
    def __fake_vars(self):
        return _create_fake_var()

    @LazyInitialized
    def _double_grads(self):
        return self._get_double_grads(self._origin_main_program)

210 211 212 213 214 215 216
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
            return self._origin_main_program.clone(for_test=is_infer_mode)
        else:
            train_program = self._append_backward_desc(
217 218
                self._origin_main_program
            )
219 220 221
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
222

223 224 225 226 227 228 229 230 231 232 233
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
            rewrite_program(amp_program, self._amp_list)
        if is_infer_mode:
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
234

235 236 237
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
238 239
            for_test=is_infer_mode
        )
240
        with program_guard(pure_fp16_program):
241 242 243
            cast_model_to_fp16(
                pure_fp16_program, self._amp_list, use_fp16_guard=False
            )
244 245 246 247
        if is_infer_mode:
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
248 249
                pure_fp16_program
            )
250 251
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
252

253
    @switch_to_static_graph
254 255 256
    def _create_forward_backward_train_program(self):
        whole_program = self._create_program()
        forward_end_op_index = self._infer_program.desc.block(0).op_size()
257 258 259
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
260

261 262 263 264
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
        whole_program = self._create_amp_program()
        forward_end_op_index = self._infer_amp_program.desc.block(0).op_size()
265 266 267
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
268 269 270 271 272

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
        whole_program = self._create_pure_fp16_program()
        forward_end_op_index = self._infer_pure_fp16_program.desc.block(
273 274 275 276 277
            0
        ).op_size()
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
278 279

    @LazyInitialized
280 281
    def _train_program(self):
        return self._create_program()
282

283
    @LazyInitialized
284 285
    def _infer_program(self):
        return self._create_program(is_infer_mode=True)
286

287 288 289 290 291 292 293
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
        return self._create_amp_program(is_infer_mode=True)
294 295 296

    @LazyInitialized
    def _train_pure_fp16_program(self):
297
        return self._create_pure_fp16_program()
298

299
    @LazyInitialized
300 301
    def _infer_pure_fp16_program(self):
        return self._create_pure_fp16_program(is_infer_mode=True)
302

303
    @LazyInitialized
304 305 306
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
307 308

    @LazyInitialized
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

    @property
    def whole_program(self):
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program
            else:
                return self._train_program
        else:
            if _in_amp_guard():
                return self._infer_amp_program
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program
            else:
                return self._infer_program

    @property
    def forward_program(self):
        if self.training:
            if _in_amp_guard():
                program = self._train_amp_forward_backward_program
                return program[0]
            elif _in_pure_fp16_guard():
                program = self._train_pure_fp16_forward_backward_program
                return program[0]
            else:
                program = self._train_forward_backward_program
                return program[0]
        else:
            if _in_amp_guard():
                return self._infer_amp_program
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program
            else:
                return self._infer_program

    @property
    def backward_program(self):
        if self.training:
            if _in_amp_guard():
                program = self._train_amp_forward_backward_program
                return program[1]
            elif _in_pure_fp16_guard():
                program = self._train_pure_fp16_forward_backward_program
                return program[1]
            else:
                program = self._train_forward_backward_program
                return program[1]
        else:
            return paddle.static.Program()
369

370 371
    @LazyInitialized
    def _train_program_id(self):
372
        program_id = _hash_with_id(self._train_program, self)
373 374 375
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
376
        return program_id
377

378 379 380 381
    @LazyInitialized
    def _infer_program_id(self):
        return _hash_with_id(self._infer_program, self)

382 383 384
    @LazyInitialized
    def _train_amp_program_id(self):
        program_id = _hash_with_id(self._train_amp_program, self)
385 386 387
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
388 389
        return program_id

390 391 392 393
    @LazyInitialized
    def _infer_amp_program_id(self):
        return _hash_with_id(self._infer_amp_program, self)

394 395 396
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
        program_id = _hash_with_id(self._train_pure_fp16_program, self)
397 398 399
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
400 401
        return program_id

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
        return _hash_with_id(self._infer_pure_fp16_program, self)

    @property
    def whole_program_id(self):
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

423 424 425 426 427 428 429 430 431 432 433 434
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

435 436 437
    def prepare_gradient_aggregation(
        self, start_idx, main_program, target_program
    ):
438 439 440 441 442 443 444
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
445

446 447 448 449 450 451 452 453 454
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
455 456
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.SELECTED_ROWS,
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
473 474 475 476 477 478 479 480 481 482
                    lambda x: x[0] >= start_idx
                    and any(
                        [
                            out_arg == var_grad_name
                            for out_arg in x[1].output_arg_names
                        ]
                    ),
                    enumerate(target_program.block(0).ops),
                )
            )
483 484 485 486 487 488

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
489 490 491 492 493 494
            target_program.block(0).create_var(
                name=new_grad_name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
            )
495 496 497 498 499 500 501 502 503 504
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
505 506
                outputs={"Out": var_grad_name},
            )
507 508 509
            return None

        to_processed_vars = list(
510 511
            filter(_need_aggregation, self._outputs.tolist())
        )
512 513 514
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

515
    @switch_to_static_graph
516
    def _append_backward_desc(self, main_program):
517 518
        # make sure all status of is_test are False in train mode.
        program = _change_is_test_status(main_program.clone(), is_test=False)
519
        targets = []
520
        for out in self._outputs.tolist():
521 522 523 524 525 526
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

        if targets and self._params:
            backward.gradients(targets=targets, inputs=[])

527 528 529
        start_idx = len(main_program.block(0).ops) + 2 * len(
            self._outputs.tolist()
        )
530 531

        self.prepare_gradient_aggregation(start_idx, main_program, program)
532

533 534
        return program

535 536 537 538 539 540 541 542 543 544
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
        The `@declarative` may only decorated a sub function which
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
545
            found_param = False
546
            for block in program.blocks:
547
                for op in block.ops:
548 549 550 551
                    if (
                        param.name in op.input_arg_names
                        or param.name in op.output_arg_names
                    ):
552 553 554 555
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
556 557 558 559
                    break

        self._params = required_params

560 561 562 563 564 565
    def _get_double_grads(self, program):
        double_grads = []
        for block in program.blocks:
            for name in block.vars:
                if "@GRAD" in name:
                    var_desc = block.vars[name].desc
J
Jiabin Yang 已提交
566
                    var_base = None
J
Jiabin Yang 已提交
567
                    if not framework._in_eager_mode_:
568 569 570 571 572 573 574
                        var_base = core.VarBase(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
J
Jiabin Yang 已提交
575
                    else:
576 577 578 579 580 581 582
                        var_base = core.eager.Tensor(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
583
                    double_grads.append(var_base)
584
        return self._valid_vars(double_grads)
585

586
    def _get_end_op_index(self):
587 588 589 590 591
        if _in_amp_guard():
            infer_program = self._infer_amp_program
        elif _in_pure_fp16_guard():
            infer_program = self._infer_pure_fp16_program
        else:
592
            infer_program = self.infer_program
593 594
        return infer_program.desc.block(0).op_size()

595 596
    def __call__(self, inputs):
        in_vars, out_vars = self._prepare(inputs)
597

598 599
        self._cast_fp16_if_pure_fp16(in_vars)

600
        attrs = [
601
            'global_block',
602 603 604 605 606 607 608 609 610
            self.program.desc.block(0),
            'start_op_index',
            0,
            'end_op_index',
            self._get_end_op_index(),
            'is_test',
            not self.training,
            'program_id',
            self.program_id,
611 612 613
        ]
        if self._cuda_graph_capture_mode:
            attrs.extend(
614 615 616 617 618 619 620 621 622 623 624 625
                (
                    'cuda_graph_capture_mode',
                    self._cuda_graph_capture_mode,
                    'cuda_graph_pool_id',
                    self._cuda_graph_pool_id,
                )
            )

        use_interpretorcore = (
            _is_enable_standalone_executor()
            and _is_dy2st_enable_standalone_executor()
        )
626 627 628
        attrs.extend(('use_interpretorcore', use_interpretorcore))
        if use_interpretorcore:
            attrs.extend(
629 630 631 632 633 634 635
                (
                    'forward_global_block',
                    self.forward_program.desc.block(0),
                    'backward_global_block',
                    self.backward_program.desc.block(0),
                )
            )
636

637
            _legacy_C_ops.run_program(
638 639
                self._valid_vars(in_vars),
                self._valid_vars(self._params),
640
                self._valid_vars(out_vars),
641 642 643 644 645 646 647
                self._create_scope_vec(
                    program_id=self.program_id, use_scope_cache=True
                ),
                self._double_grads,
                self._cuda_graph_vec,
                *attrs
            )
648
        else:
649 650 651 652 653 654 655 656 657
            _legacy_C_ops.run_program(
                self._valid_vars(in_vars),
                self._valid_vars(self._params),
                self._valid_vars(out_vars),
                self._create_scope_vec(),
                self._double_grads,
                self._cuda_graph_vec,
                *attrs
            )
658 659
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)
660

661 662 663 664
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
665 666 667 668 669
                if (
                    self.program.global_block().has_var(name)
                    and self.program.global_block().var(name).dtype
                    == paddle.float16
                ):
670 671 672
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name

673 674
    @property
    def program(self):
675
        return self.whole_program
676

677 678
    @property
    def program_id(self):
679
        return self.whole_program_id
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697

    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program
698

699
    @switch_to_static_graph
700 701 702
    def _get_forward_backward_program_form(
        self, whole_program, forward_end_op_index
    ):
703
        forward_builded_program = add_build_strategy_for(
704 705
            whole_program, 0, forward_end_op_index, self._build_strategy
        )
706
        backward_start_op_index = forward_end_op_index + 2 * len(
707 708
            self._outputs.var_ids
        )
709 710
        backward_end_op_index = whole_program.desc.block(0).op_size()
        backward_builded_program = add_build_strategy_for(
711 712 713 714 715 716 717 718
            whole_program,
            backward_start_op_index,
            backward_end_op_index,
            self._build_strategy,
        )
        self._apply_inplace_pass(
            forward_builded_program, backward_builded_program
        )
719 720 721 722 723 724
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
725
            "for_partial_block": "bool",
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
        forward_mem_opt_skip_vars = []
        backward_mem_opt_skip_vars = []
        for var_name, var in forward_program.global_block().vars.items():
            if var.is_data:
                forward_mem_opt_skip_vars.append(var_name)
        for var_name, var in backward_program.global_block().vars.items():
            if var.is_data:
                backward_mem_opt_skip_vars.append(var_name)
        for var in self._inputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                forward_mem_opt_skip_vars.append(var.desc.name())
                backward_mem_opt_skip_vars.append(var.desc.name())
        for var in self._outputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                forward_mem_opt_skip_vars.append(var.desc.name())
                backward_mem_opt_skip_vars.append(var.desc.name())
        for var_name in core.parse_safe_eager_deletion_skip_vars(
747 748
            backward_program.desc
        ):
749 750 751 752
            forward_mem_opt_skip_vars.append(var_name)
        attrs = {
            "use_cuda": use_cuda,
            "mem_opt_skip_vars": forward_mem_opt_skip_vars,
753
            "for_partial_block": True,
754
        }
755 756 757 758 759 760 761
        _apply_pass(
            forward_program,
            empty_startup_program,
            "buffer_shared_inplace_pass",
            attrs,
            attr_types,
        )
762 763 764
        attrs = {
            "use_cuda": use_cuda,
            "mem_opt_skip_vars": backward_mem_opt_skip_vars,
765
            "for_partial_block": True,
766
        }
767 768 769 770 771 772 773
        _apply_pass(
            backward_program,
            empty_startup_program,
            "buffer_shared_inplace_pass",
            attrs,
            attr_types,
        )
774

775 776 777 778 779
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
780 781
        # Flatten inputs with nested structure into single list.
        flatten_inputs = flatten(inputs)
782 783
        # Convert variable into VarBase and feed in training data.
        input_vars = []
784
        expected_place = framework._current_expected_place()
785
        for i, value in enumerate(flatten_inputs):
786
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
787
                var = None
J
Jiabin Yang 已提交
788
                if not framework._in_eager_mode_:
789 790 791 792 793 794 795
                    var = core.VarBase(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
796
                else:
797 798 799 800 801 802 803
                    var = core.eager.Tensor(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
804
            elif isinstance(value, (core.VarBase, core.eager.Tensor)):
805 806 807 808
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
809 810
                    expected_place
                ):
811 812
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
813 814
                else:
                    var = value
815
                var.name = self._inputs[i].desc.name()
816 817 818
            else:
                continue
            input_vars.append(var)
819

820 821 822
        # mapping from name(string) -> VarBase
        out_varbase_map = {}

823 824
        def create_out(var_id):
            var = self._outputs[var_id]
825
            assert isinstance(var, framework.Variable)
826
            var_desc = var.desc
J
Jiabin Yang 已提交
827
            varbase = None
828 829 830 831

            if var_desc.name() in out_varbase_map:
                return out_varbase_map[var_desc.name()]

J
Jiabin Yang 已提交
832
            if not framework._in_eager_mode_:
833 834 835 836 837 838 839
                var_base = core.VarBase(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
J
Jiabin Yang 已提交
840
            else:
841 842 843 844 845 846 847
                var_base = core.eager.Tensor(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
848
            var_base.stop_gradient = var.stop_gradient
849
            out_varbase_map[var_desc.name()] = var_base
850 851 852 853 854 855
            return var_base

        # Create VarBase to receive output data.
        out_vars = list(map(create_out, self._outputs.var_ids))

        return input_vars, out_vars
856

857
    def _create_scope_vec(self, program_id=None, use_scope_cache=False):
858
        # Hold forward variables
J
Jiabin Yang 已提交
859
        tmp_scope_vec = None
860 861 862
        inner_scope = self._get_scope(
            program_id=program_id, use_scope_cache=use_scope_cache
        )
J
Jiabin Yang 已提交
863
        if not framework._in_eager_mode_:
864 865 866 867 868 869 870
            tmp_scope_vec = core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "program_out_scope",
                core.VarDesc.VarType.STEP_SCOPES,
                True,
            )
J
Jiabin Yang 已提交
871
            tmp_scope_vec.value().set_scope(inner_scope)
872 873
        else:
            tmp_scope_vec = [inner_scope]
874
        return tmp_scope_vec
875

876
    def _create_cuda_graph_vec(self):
877 878 879 880 881 882 883
        var = core.VarBase(
            core.VarDesc.VarType.FP32,
            [],
            "cuda_graph",
            core.VarDesc.VarType.RAW,
            True,
        )
884 885 886
        var.stop_gradient = True
        return var

887 888 889 890 891 892 893 894 895
    def _restore_out(self, out_vars):
        """
        Restores same nested outputs by only replacing the Variable with VarBase.
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
896
        if outs is not None and len(outs) == 1:
897 898 899 900
            outs = outs[0]

        return outs

901 902 903 904
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

905
    def _is_no_value(self, var):
906 907 908
        if isinstance(var, (core.VarBase, core.eager.Tensor)) and var.shape == [
            1
        ]:
909 910
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
911 912 913 914 915 916 917
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
J
Jiabin Yang 已提交
918
        if isinstance(out_vars, (core.VarBase, core.eager.Tensor)):
919 920 921 922 923
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
924 925 926
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var)
                )
927 928 929 930
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

931
            has_removed = len(out_vars) > len(res)
932 933 934 935 936 937 938 939 940 941
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

942
    def _set_grad_type(self, params, train_program):
943 944 945 946 947 948 949 950
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
        # set param grad VarBase by forward VarBase(LoDTensor)
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
951
            grad_var = train_program.desc.block(0).find_var(grad_name.encode())
952 953 954 955 956
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

957 958 959 960 961 962 963 964 965 966 967 968 969
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

970 971 972 973 974 975 976 977 978 979
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
            1. all parameters in self._params should be type `framework.ParamBase` which are created in dygraph.
            2. all parameters from transformed program can be found in self._params.
               Because they share same data with ParamBase of original dygraph.
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
980 981
                % type(self._params)
            )
982

983 984 985
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
J
Jiabin Yang 已提交
986
            if not isinstance(var, (core.VarBase, core.eager.Tensor)):
987
                raise TypeError(
988 989 990 991
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.format(
                        i, type(var)
                    )
                )
992
            param_and_buffer_names_set.add(var.name)
993 994

        for block in main_program.blocks:
995
            for name, var in block.vars.items():
996
                if isinstance(var, framework.Parameter):
997
                    if name not in param_and_buffer_names_set:
998
                        raise ValueError(
999 1000 1001 1002 1003 1004
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
1005 1006
                            % name
                        )
1007

1008 1009 1010 1011 1012 1013 1014 1015
    def _valid_vars(self, vars):
        """
        Note: run_program_op.InferShape requires `X`/'Out' not be null.
        But it's common in dy2static, fake varBase is created to handle the
        problem.
        """
        return vars if vars else self.__fake_vars

1016

1017
def _create_fake_var():
1018
    """
1019
    Create a fake_var (force on CPU) to handle empty input or output
1020
    """
J
Jiabin Yang 已提交
1021
    if not framework._in_eager_mode_:
J
Jiabin Yang 已提交
1022
        return [
1023 1024 1025 1026 1027 1028 1029
            core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
J
Jiabin Yang 已提交
1030 1031
        ]
    else:
1032
        return [
1033 1034 1035 1036 1037 1038 1039
            core.eager.Tensor(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
1040
        ]
1041 1042 1043 1044 1045 1046 1047


def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

1048 1049 1050 1051 1052 1053 1054
    return PartialProgramLayer(
        concrete_program.main_program,
        inputs,
        concrete_program.outputs,
        concrete_program.parameters,
        **concrete_program.kwargs
    )
1055 1056 1057


@switch_to_static_graph
1058 1059 1060 1061
def add_build_strategy_for(
    program, start_op_index, end_op_index, build_strategy=None
):
    if start_op_index < end_op_index:
1062 1063
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
1064 1065 1066 1067 1068
            build_strategy=build_strategy,
        )
        compiled_program._compile(
            core.Scope(), framework._current_expected_place()
        )
1069 1070 1071 1072 1073 1074 1075
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
        if hasattr(compiled_program._program, 'lr_sheduler'):
            builded_program.lr_sheduler = compiled_program._program.lr_sheduler
    else:
        builded_program = program
    return builded_program