adaround.py 12.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import time
import sys
import logging

import paddle.fluid as fluid

from ....log_helper import get_logger
23 24 25 26 27 28 29 30 31 32 33 34 35 36
from .utils import (
    load_variable_data,
    set_variable_data,
    stable_sigmoid,
    quant_tensor,
    dequant_tensor,
    _channelwise_quant_axis1_ops,
    calculate_quant_cos_error,
    bias_correction_w,
)

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s'
)
37 38 39 40 41 42

GAMMA = -0.1
ZETA = 1.1


def compute_soft_rounding(alpha_v):
43 44 45
    return fluid.layers.clip(
        fluid.layers.sigmoid(alpha_v) * (ZETA - GAMMA) + GAMMA, min=0, max=1
    )
46 47 48


def compute_soft_rounding_np(alpha_v):
49 50 51
    return np.clip(
        stable_sigmoid(alpha_v) * (ZETA - GAMMA) + GAMMA, a_min=0, a_max=1
    )
52 53 54 55 56 57 58 59


class AdaRoundLoss(object):
    def __init__(self, reg_param=0.01, default_beta_range=(20, 2)):
        self.default_reg_param = reg_param
        self.default_beta_range = default_beta_range

    def compute_recon_loss(self, ada_quantized_output, orig_output):
60 61 62
        square_cost = fluid.layers.square_error_cost(
            ada_quantized_output, orig_output
        )
63
        recon_loss = fluid.layers.reduce_mean(
64 65
            fluid.layers.reduce_sum(square_cost, dim=-1)
        )
66 67 68 69 70 71 72 73 74
        return recon_loss

    def compute_round_loss(self, alpha_v, warm_start, beta):
        def round_loss_fn():
            # compute rectified sigmoid of parameter 'alpha' which maps it between zero and one
            h_v = compute_soft_rounding(alpha_v)

            # calculate regularization term - which ensures parameter to converge to exactly zeros and ones
            # at the end of optimization
75
            reg_term = fluid.layers.reduce_sum(
76 77 78
                -fluid.layers.pow(fluid.layers.abs(2 * h_v - 1), factor=beta)
                + 1
            )
79 80 81 82 83 84

            # calculate the rounding loss
            round_loss = self.default_reg_param * reg_term

            return round_loss

85
        round_loss = fluid.layers.cond(
86 87 88 89 90 91
            warm_start,
            lambda: fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.0
            ),
            round_loss_fn,
        )
92 93 94 95 96 97 98 99 100 101 102 103

        return round_loss

    def compute_beta(self, max_iter, cur_iter, warm_start):

        #  Start and stop beta for annealing of rounding loss (start_beta, end_beta)
        start_beta, end_beta = self.default_beta_range

        # iteration at end of warm start period, which is 20% of max iterations
        warm_start_end_iter = warm_start * max_iter

        # compute relative iteration of current iteration
104 105 106 107 108 109
        rel_iter = (cur_iter - warm_start_end_iter) / (
            max_iter - warm_start_end_iter
        )
        beta = end_beta + 0.5 * (start_beta - end_beta) * (
            1 + np.cos(rel_iter * np.pi)
        )
110 111 112 113 114

        return beta


class AdaRound(object):
115 116 117 118 119 120 121 122 123 124
    def __init__(
        self,
        scale,
        weight_tensor,
        scope=None,
        weight_var_name=None,
        weight_op_type=None,
        is_train=True,
        num_iterations=1000,
    ):
125 126 127 128
        self.is_train = is_train
        self.num_iterations = num_iterations
        self.warm_start = 0.1
        self.weight_bits = 8
129
        self.offset = 0.0  # zero-point offset
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
        self.adaround_loss = AdaRoundLoss()
        self.ori_weight_tensor = weight_tensor
        self.scale = scale
        self.scope = scope
        self.quant_axis = 0
        if weight_op_type in _channelwise_quant_axis1_ops:
            self.quant_axis = 1
        self.weight_var_name = weight_var_name
        self.alpha_name = weight_var_name + ".alpha"
        self.initialize_alpha(weight_tensor.copy(), scale, weight_var_name)

    def initialize_alpha(self, tensor, scale, var_name):
        """
        Initializes alpha parameter, same shape as the weight tensor
        """
        tensor_scale = quant_tensor(tensor, scale, quant_axis=self.quant_axis)
        tensor_floor = np.floor(tensor_scale)
        tensor = tensor_scale - tensor_floor
        alpha = -np.log((ZETA - GAMMA) / (tensor - GAMMA) - 1)
        self.alpha_v = fluid.layers.create_parameter(
            shape=alpha.shape,
            dtype="float32",
            name=var_name + ".alpha",
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
            default_initializer=fluid.initializer.NumpyArrayInitializer(alpha),
        )

    def _calculate_output_with_adarounded_weights(
        self, program, place, exe, data, fp32_fetch_list, weight_tensor_dequant
    ):
        set_variable_data(
            self.scope, place, self.weight_var_name, weight_tensor_dequant
        )

        adaround_out_tensor = exe.run(
            program=program,
            feed=data,
            fetch_list=[fp32_fetch_list],
            return_numpy=True,
            scope=self.scope,
        )
170 171 172 173 174 175 176
        return adaround_out_tensor

    def _calculate_quant_weight(self):
        np_alpha = load_variable_data(self.scope, self.alpha_name)
        h_alpha = compute_soft_rounding_np(np_alpha)

        # Scale the tensor
177 178 179 180 181
        tensor_scale = quant_tensor(
            self.ori_weight_tensor.copy(),
            self.scale,
            quant_axis=self.quant_axis,
        )
182 183 184 185 186 187 188 189 190 191 192

        weight_tensor = np.floor(tensor_scale)

        # Adaround the tensor
        weight_tensor_quant = np.add(weight_tensor, h_alpha)
        return weight_tensor_quant

    def _calculate_adarounded_weights(self):
        weight_tensor_quant = self._calculate_quant_weight()

        # Dequantize the tensor
193 194 195 196 197
        weight_tensor_dequant = dequant_tensor(
            weight_tensor_quant + self.offset,
            self.scale,
            quant_axis=self.quant_axis,
        )
198 199 200 201 202 203 204
        return weight_tensor_dequant

    def update_final_weights(self):
        weight_tensor_quant = self._calculate_quant_weight()
        return weight_tensor_quant

    def get_loss(self, beta, warm_start, adaround_out_tensor, orig_out_tensor):
205
        round_loss = self.adaround_loss.compute_round_loss(
206 207
            self.alpha_v, warm_start, beta
        )
208
        recon_loss = self.adaround_loss.compute_recon_loss(
209 210
            adaround_out_tensor, orig_out_tensor
        )
211 212 213 214
        loss = round_loss + recon_loss
        losses = {
            'loss': loss,
            'round_loss': round_loss,
215
            'recon_loss': recon_loss,
216 217 218 219 220
        }
        return losses

    def update_beta_warm(self, cur_iteration):
        warm_start = cur_iteration < self.num_iterations * self.warm_start
221 222 223
        beta = self.adaround_loss.compute_beta(
            self.num_iterations, cur_iteration, self.warm_start
        )
224 225 226
        return beta, warm_start


227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
def run_adaround(
    data_loader,
    fp32_program,
    fetch_list,
    exe,
    scope,
    place,
    quantized_op_pairs,
    weight_op_pairs,
    scale_dict,
    num_iterations=1000,
    lr=0.001,
    bias_correction=False,
    fast_mode=True,
):
242 243 244 245 246 247 248 249 250 251 252 253 254
    fetch_op_name = fetch_list[0].name
    final_weight_tensor_quant_dict = {}
    for weight_var_name, quant_op_out_name in quantized_op_pairs.items():
        _logger.info('Start adaround op: {}'.format(weight_var_name))
        weight_op_type = weight_op_pairs[weight_var_name]
        # get scale and weight tensor
        weight_var_tensor = load_variable_data(scope, weight_var_name)
        scale = scale_dict[weight_var_name]
        fp32_fetch_list = None
        for _op in fp32_program.global_block().ops:
            if _op.type == "fetch":
                _op._rename_input(fetch_op_name, quant_op_out_name)
                fp32_fetch_list = fp32_program.global_block().var(
255 256
                    quant_op_out_name
                )
257 258 259 260 261 262 263 264 265 266
                fetch_op_name = quant_op_out_name

        # build adaround program
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_iteration_per_drop_scope = 1
        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            with fluid.unique_name.guard():
                # initialize adaround
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
                adaround = AdaRound(
                    scale,
                    weight_var_tensor,
                    scope=scope,
                    weight_var_name=weight_var_name,
                    weight_op_type=weight_op_type,
                    num_iterations=num_iterations,
                )
                orig_out_tensor = fluid.data(
                    name='orig_out_tensor',
                    shape=fp32_fetch_list.shape,
                    dtype='float32',
                )
                adaround_out_tensor = fluid.data(
                    name='adaround_out_tensor',
                    shape=fp32_fetch_list.shape,
                    dtype='float32',
                )
                beta_tensor = fluid.data(
                    name='beta', shape=[1], dtype='float32'
                )
                warm_start_tensor = fluid.data(
                    name='warm_start', shape=[1], dtype='bool'
                )

                train_fetches_loss = adaround.get_loss(
                    beta_tensor,
                    warm_start_tensor,
                    adaround_out_tensor,
                    orig_out_tensor,
                )
298 299 300 301 302 303 304 305 306 307 308
                optimizer = fluid.optimizer.Adam(learning_rate=lr)
                loss = train_fetches_loss['loss']
                optimizer.minimize(loss)
        exe.run(startup_program)

        start_time = time.time()
        prev_start_time = start_time
        for i, data in enumerate(data_loader()):
            prev_start_time = start_time
            start_time = time.time()
            # run fp32 model
309 310 311 312 313 314 315
            np_orig_out_tensor = exe.run(
                program=fp32_program,
                feed=data,
                fetch_list=[fp32_fetch_list],
                return_numpy=True,
                scope=scope,
            )
316

317 318 319 320 321 322 323 324 325 326 327 328
            adaround_weight_tensor_dequant = (
                adaround._calculate_adarounded_weights()
            )
            np_adaround_out_tensor = (
                adaround._calculate_output_with_adarounded_weights(
                    fp32_program,
                    place,
                    exe,
                    data,
                    fp32_fetch_list,
                    adaround_weight_tensor_dequant,
                )
329 330 331
            )

            # If the cosine distance of the two tensor is small, skip training
332 333 334
            cos_error = calculate_quant_cos_error(
                np_orig_out_tensor[0], np_adaround_out_tensor[0]
            )
335 336 337 338 339 340 341 342
            if fast_mode and cos_error > 0.99:
                _logger.info("The cosine error is small, skip training.")
                break
            beta, warm_start = adaround.update_beta_warm(i)
            feed_dict = {
                'orig_out_tensor': np_orig_out_tensor[0],
                'adaround_out_tensor': np_adaround_out_tensor[0],
                'beta': beta,
343
                'warm_start': warm_start,
344 345 346 347 348
            }
            out = exe.run(
                train_program,
                feed=feed_dict,
                fetch_list=[v.name for v in train_fetches_loss.values()],
349 350
                return_numpy=True,
            )
351
            _logger.info(
352 353 354 355 356 357 358 359 360
                "Iter {:d}, lr {:.5f}, loss {:.5f}, loss_round {:.5f}, loss_recon {:.5f}, time {:.5f}s".format(
                    i,
                    lr,
                    np.mean(out[0]),
                    np.mean(out[1]),
                    np.mean(out[2]),
                    start_time - prev_start_time,
                )
            )
361 362 363 364
            sys.stdout.flush()
            if i == num_iterations:
                break
        final_weight_tensor_quant_dict[
365 366
            weight_var_name
        ] = adaround.update_final_weights()
367 368 369 370 371 372 373

        if bias_correction:
            final_weight_tensor_quant_dict[weight_var_name] = bias_correction_w(
                weight_var_tensor,
                final_weight_tensor_quant_dict[weight_var_name],
                scale,
                adaround.quant_axis,
374 375
                weight_bits=adaround.weight_bits,
            )
376

377 378 379 380
        del adaround

    # update adarounded calibrated weights
    for weight_var_name in quantized_op_pairs.keys():
381 382 383 384 385 386
        set_variable_data(
            scope,
            place,
            weight_var_name,
            final_weight_tensor_quant_dict[weight_var_name],
        )