concat_and_split.cc 7.3 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 paddlepaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

C
chengduo 已提交
15
#include "paddle/fluid/operators/math/concat_and_split.h"
W
wanghuancoder 已提交
16 17 18 19 20 21 22 23 24 25 26

namespace paddle {
namespace framework {
class Tensor;
}  // namespace framework
namespace platform {
class CPUDeviceContext;
struct bfloat16;
struct float16;
}  // namespace platform
}  // namespace paddle
C
chengduoZH 已提交
27 28 29 30 31 32

namespace paddle {
namespace operators {
namespace math {

/*
C
chengduoZH 已提交
33
 * All tensors' dimension should be the same and the values of
34
 * each dimension must be the same, except the axis dimension.
C
chengduoZH 已提交
35 36 37 38 39
 */
template <typename T>
class ConcatFunctor<platform::CPUDeviceContext, T> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
40
                  const std::vector<framework::Tensor>& input, int axis,
C
chengduoZH 已提交
41
                  framework::Tensor* output) {
C
chengduoZH 已提交
42
    // TODO(zcd): Add input data validity checking
W
wuhuachaocoding 已提交
43
    size_t num = input.size();
C
chengduoZH 已提交
44

W
wuhuachaocoding 已提交
45
    int64_t rows = 1;
C
chengduoZH 已提交
46 47 48 49
    auto dim_0 = input[0].dims();
    for (int i = 0; i < axis; ++i) {
      rows *= dim_0[i];
    }
W
wuhuachaocoding 已提交
50
    int64_t out_rows = rows, out_cols = 0;
C
chengduoZH 已提交
51

C
chengduoZH 已提交
52
    std::vector<int64_t> input_cols(input.size());
W
wuhuachaocoding 已提交
53 54
    for (size_t i = 0; i < num; ++i) {
      int64_t t_cols = input[i].numel() / rows;
C
chengduoZH 已提交
55
      out_cols += t_cols;
C
chengduoZH 已提交
56
      input_cols[i] = t_cols;
C
chengduoZH 已提交
57
    }
58
    auto cpu_place = BOOST_GET_CONST(platform::CPUPlace, context.GetPlace());
C
chengduoZH 已提交
59

C
chengduoZH 已提交
60
    // computation
L
luotao1 已提交
61
    auto output_data = output->data<T>();
W
wuhuachaocoding 已提交
62 63 64
    int64_t col_idx = 0;
    for (size_t j = 0; j < num; ++j) {
      int64_t col_len = input_cols[j];
L
luotao1 已提交
65
      auto input_data = input[j].data<T>();
W
wuhuachaocoding 已提交
66
      for (int64_t k = 0; k < out_rows; ++k) {
L
luotao1 已提交
67 68
        memory::Copy(cpu_place, output_data + k * out_cols + col_idx, cpu_place,
                     input_data + k * col_len, sizeof(T) * col_len);
C
chengduoZH 已提交
69
      }
L
luotao1 已提交
70
      col_idx += col_len;
C
chengduoZH 已提交
71
    }
C
chengduoZH 已提交
72 73 74
  }
};

C
chengduoZH 已提交
75 76
/*
 * All tensors' dimension should be the same and the values of
77
 * each dimension must be the same, except the axis dimension.
C
chengduoZH 已提交
78
 */
C
chengduoZH 已提交
79
template <typename T>
C
chengduo 已提交
80
class SplitFunctor<platform::CPUDeviceContext, T> {
C
chengduoZH 已提交
81 82
 public:
  void operator()(const platform::CPUDeviceContext& context,
Q
qiaolongfei 已提交
83
                  const framework::Tensor& input,
C
chengduoZH 已提交
84
                  const std::vector<const framework::Tensor*>& ref_inputs,
Q
qiaolongfei 已提交
85
                  const int axis, std::vector<framework::Tensor*>* outputs) {
L
Leo Chen 已提交
86 87 88 89 90 91
    // NOTE(zhiqiu): split a tensor of shape [0,3,4] at axis=1, result in 3
    // tensors of shape [0,1,4]
    if (input.numel() == 0) {
      return;
    }

C
chengduoZH 已提交
92
    // TODO(zcd): Add input data validity checking
Q
qiaolongfei 已提交
93
    size_t num = outputs->size();
C
chengduoZH 已提交
94

C
chengduoZH 已提交
95
    int input_rows = 1;
Q
qiaolongfei 已提交
96
    auto dim_0 = ref_inputs[0]->dims();
C
chengduoZH 已提交
97 98 99
    for (int i = 0; i < axis; ++i) {
      input_rows *= dim_0[i];
    }
Q
qiaolongfei 已提交
100

C
chengduoZH 已提交
101 102
    int input_cols = 0;

103
    std::vector<int64_t> output_cols(outputs->size());
Q
qiaolongfei 已提交
104 105
    for (size_t i = 0; i < num; ++i) {
      int t_cols = ref_inputs[i]->numel() / input_rows;
C
chengduoZH 已提交
106 107 108
      input_cols += t_cols;
      output_cols[i] = t_cols;
    }
109
    auto cpu_place = BOOST_GET_CONST(platform::CPUPlace, context.GetPlace());
C
chengduoZH 已提交
110 111

    // computation
C
chengduoZH 已提交
112
    for (int k = 0; k < input_rows; ++k) {
C
chengduoZH 已提交
113 114
      const T* src_ptr = input.data<T>() + k * input_cols;
      int col_idx = 0;
C
chengduoZH 已提交
115
      for (size_t j = 0; j < num; ++j) {
C
chengduoZH 已提交
116
        int col_len = output_cols[j];
Q
qiaolongfei 已提交
117
        auto* out_tensor = outputs->at(j);
Q
qiaolongfei 已提交
118 119 120 121 122
        if (out_tensor != nullptr) {
          T* dst_ptr = out_tensor->data<T>() + k * col_len;
          memory::Copy(cpu_place, dst_ptr, cpu_place, src_ptr + col_idx,
                       sizeof(T) * col_len);
        }
C
chengduoZH 已提交
123 124 125
        col_idx += col_len;
      }
    }
C
chengduoZH 已提交
126 127
  }
};
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

#ifdef PADDLE_WITH_XPU
/*
 * All tensors' dimension should be the same and the values of
 * each dimension must be the same, except the axis dimension.
 */
template <typename T>
class ConcatFunctor<platform::XPUDeviceContext, T> {
 public:
  void operator()(const platform::XPUDeviceContext& context,
                  const std::vector<framework::Tensor>& input, int axis,
                  framework::Tensor* output) {
    int dev_id =
        BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()).GetDeviceId();
    platform::XPUDeviceGuard guard(dev_id);

    int num = input.size();
    auto input_dims = input[0].dims();

    std::vector<std::vector<int>> xdims_list(num);
    for (int i = 0; i < num; ++i) {
      std::vector<int> tmp_dims(input_dims.size());
      for (int j = 0; j < input_dims.size(); ++j) {
        tmp_dims[j] = input[i].dims()[j];
      }
      xdims_list[i] = tmp_dims;
    }

    std::vector<const T*> ptrs;
    for (int i = 0; i < num; ++i) {
      ptrs.push_back(input[i].data<T>());
    }

    auto r = xpu::concat<T>(context.x_context(), ptrs, output->data<T>(),
                            xdims_list, axis);
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External(
            "XPU API return wrong value[%d %s], please check whether "
            "Baidu Kunlun Card is properly installed.",
            r, XPUAPIErrorMsg[r]));
  }
};

template <typename T>
class SplitFunctor<platform::XPUDeviceContext, T> {
 public:
  void operator()(const platform::XPUDeviceContext& context,
                  const framework::Tensor& input,
                  const std::vector<const framework::Tensor*>& ref_inputs,
                  const int axis, std::vector<framework::Tensor*>* outputs) {
    int dev_id =
        BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()).GetDeviceId();
    platform::XPUDeviceGuard guard(dev_id);

    auto& ins = ref_inputs;

    int num = ins.size();
    auto input_dims = ins[0]->dims();
    std::vector<int> split_list(num);
    std::vector<int> xdims_list(input_dims.size());
    int total_length = 0;
    for (int i = 0; i < num; ++i) {
      split_list[i] = ins[i]->dims()[axis];
      total_length += ins[i]->dims()[axis];
    }

    for (int i = 0; i < input_dims.size(); ++i) {
      if (i == axis) continue;
      xdims_list[i] = input_dims[i];
    }
    xdims_list[axis] = total_length;

    std::vector<T*> ptrs(num);
    for (int i = 0; i < num; ++i) {
      ptrs[i] = outputs->at(i)->data<T>();
    }

    auto r = xpu::split<T>(context.x_context(), input.data<T>(), ptrs,
                           xdims_list, split_list, axis);
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External(
            "XPU API return wrong value[%d %s], please check whether "
            "Baidu Kunlun Card is properly installed.",
            r, XPUAPIErrorMsg[r]));
  }
};
#endif

C
chengduoZH 已提交
218 219
#define DEFINE_FUNCTOR(type)                                      \
  template class ConcatFunctor<platform::CPUDeviceContext, type>; \
C
chengduo 已提交
220
  template class SplitFunctor<platform::CPUDeviceContext, type>;
C
chengduoZH 已提交
221

C
chengduoZH 已提交
222
FOR_ALL_TYPES(DEFINE_FUNCTOR);
C
chengduoZH 已提交
223

224 225 226 227 228 229 230 231
#ifdef PADDLE_WITH_XPU
#define DEFINE_XPU_FUNCTOR(type)                                  \
  template class ConcatFunctor<platform::XPUDeviceContext, type>; \
  template class SplitFunctor<platform::XPUDeviceContext, type>;

DEFINE_XPU_FUNCTOR(float)
#endif

C
chengduoZH 已提交
232 233 234
}  // namespace math
}  // namespace operators
}  // namespace paddle