ngraph_engine.cc 21.7 KB
Newer Older
B
baojun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <glog/logging.h>

#include <algorithm>
#include <map>
19
#include <memory>
B
baojun 已提交
20
#include <string>
21 22
#include <unordered_set>
#include <utility>
B
baojun 已提交
23 24 25 26 27 28 29 30 31 32
#include <vector>

#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/var_type.h"
33
#include "paddle/fluid/operators/ngraph/ngraph_bridge.h"
B
baojun 已提交
34 35 36 37 38 39 40 41
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"

namespace paddle {
namespace operators {

static ngraph::Shape Ddim2Shape(const framework::DDim& dims) {
  ngraph::Shape sp;
  for (int i = 0; i < dims.size(); ++i) {
42
    sp.emplace_back(dims[i]);
B
baojun 已提交
43 44 45 46
  }
  return sp;
}

47 48 49 50 51 52 53 54 55
static framework::DDim Shape2Ddim(const ngraph::Shape& shape) {
  std::vector<int64_t> dims;
  for (size_t i = 0; i < shape.size(); ++i) {
    int64_t k = shape[i];
    dims.emplace_back(k);
  }
  return framework::make_ddim(dims);
}

B
baojun 已提交
56 57 58 59 60 61
static std::map<framework::proto::VarType::Type, ngraph::element::Type>
    pd2ng_type_map = {
        {framework::proto::VarType::FP32, ngraph::element::f32},
        {framework::proto::VarType::FP64, ngraph::element::f64},
        {framework::proto::VarType::INT32, ngraph::element::i32},
        {framework::proto::VarType::INT64, ngraph::element::i64},
62
        {framework::proto::VarType::UINT8, ngraph::element::u8},
63 64 65 66 67 68 69 70
        {framework::proto::VarType::BOOL, ngraph::element::boolean}};

static std::map<ngraph::element::Type, framework::proto::VarType::Type>
    ng2pd_type_map = {
        {ngraph::element::f32, framework::proto::VarType::FP32},
        {ngraph::element::f64, framework::proto::VarType::FP64},
        {ngraph::element::i32, framework::proto::VarType::INT32},
        {ngraph::element::i64, framework::proto::VarType::INT64},
71
        {ngraph::element::u8, framework::proto::VarType::UINT8},
72 73 74 75 76 77
        {ngraph::element::boolean, framework::proto::VarType::BOOL}};

std::vector<std::string> NgraphEngine::feed_vars = {};
std::vector<std::string> NgraphEngine::fetch_vars = {};
framework::Variable* NgraphEngine::pre_var_ptr = nullptr;
const framework::BlockDesc* NgraphEngine::p_bdesc = nullptr;
78
bool NgraphEngine::is_training = false;
79

B
baojun 已提交
80 81 82 83
std::shared_ptr<ngraph::runtime::Backend> NgraphEngine::backend_ =
    ngraph::runtime::Backend::create("CPU");

static std::vector<std::vector<int>> NgraphOpIntervals(
84 85 86
    std::vector<std::unique_ptr<framework::OperatorBase>>* ops) {
  NgraphEngine::feed_vars.clear();
  NgraphEngine::fetch_vars.clear();
B
baojun 已提交
87
  std::vector<std::vector<int>> intervals;
88 89

  int size = ops->size();
90
  int left = 0, feed_idx = -1;
B
baojun 已提交
91
  while (left < size && ops->at(left)->Type() != framework::kFeedOpType &&
92
         ops->at(left)->Type() != "read" &&
B
baojun 已提交
93
         ops->at(left)->Type() != framework::kFetchOpType) {
B
baojun 已提交
94 95
    ++left;
  }
96

97 98 99 100 101 102 103
  if (left < size) {
    auto op_type = ops->at(left)->Type();
    if (op_type == framework::kFeedOpType || op_type == "read") {
      feed_idx = left;
    }
  }

104 105
  while (left < size && (ops->at(left)->Type() == framework::kFeedOpType ||
                         ops->at(left)->Type() == "read")) {
106 107 108 109 110
    for (auto& var_name_item : ops->at(left)->Outputs()) {
      for (auto& var_name : var_name_item.second) {
        NgraphEngine::feed_vars.emplace_back(var_name);
      }
    }
B
baojun 已提交
111 112 113 114
    ++left;
  }

  int right = left;
115
  while (right < size && ops->at(right)->Type() != framework::kFetchOpType) {
B
baojun 已提交
116 117 118
    ++right;
  }

119 120 121 122 123 124 125 126 127 128
  int index = right;
  while (index < size && ops->at(index)->Type() == framework::kFetchOpType) {
    for (auto& var_name_item : ops->at(index)->Inputs()) {
      for (auto& var_name : var_name_item.second) {
        NgraphEngine::fetch_vars.emplace_back(var_name);
      }
    }
    ++index;
  }

B
baojun 已提交
129 130 131 132
  if (left == size || ops->at(left)->Type() == framework::kFetchOpType) {
    left = 0;
  }

B
baojun 已提交
133 134 135
  // (left, right - 1) represents indices between feed and fetch
  int pivot = left;
  while (pivot < right) {
136
    auto op_type = ops->at(pivot)->Type();
137
    if (!NgraphBridge::isSupported(ops->at(pivot))) {
B
baojun 已提交
138 139 140
      ++pivot;
    } else {
      int start = pivot, end = start;
141
      while (pivot < right && (NgraphBridge::isSupported(ops->at(pivot)))) {
B
baojun 已提交
142 143 144 145
        ++pivot;
        ++end;
      }
      std::vector<int> interval = {start, end};
146 147 148
      if (feed_idx != -1 && start > feed_idx) {
        intervals.emplace_back(interval);
      }
B
baojun 已提交
149 150 151 152 153
    }
  }  // end while
  return intervals;
}

154 155 156 157 158 159 160 161
static void SubstituteNgraphOp(
    std::vector<std::unique_ptr<framework::OperatorBase>>* ops,
    std::string engine_key, std::string block_str, std::vector<int> interval) {
  framework::OpDesc ng_op_desc(nullptr);
  ng_op_desc.SetType("ngraph_engine");
  ng_op_desc.SetAttr("interval", interval);
  ng_op_desc.SetAttr("engine_key", engine_key);
  ng_op_desc.SetAttr("graph", block_str);
162 163
  ng_op_desc.SetInput("Xs", std::vector<std::string>(0));
  ng_op_desc.SetOutput("Ys", std::vector<std::string>(0));
164 165 166 167

  ops->erase(ops->begin() + interval[0], ops->begin() + interval[1]);
  ops->insert(ops->begin() + interval[0],
              framework::OpRegistry::CreateOp(ng_op_desc));
B
baojun 已提交
168 169
}

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
std::string SerializedBlock(const std::vector<framework::OpDesc*>& op_descs) {
  framework::proto::BlockDesc block_proto;
  framework::BlockDesc block_desc(nullptr, &block_proto);
  block_desc.Proto()->set_parent_idx(-1);
  block_desc.Proto()->set_idx(0);

  for (auto* op_desc : op_descs) {
    auto* op = block_desc.AppendOp();
    *op->Proto() = *op_desc->Proto();
  }
  return block_desc.Proto()->SerializeAsString();
}

std::string GenerateEngineKey(const framework::BlockDesc& bdesc) {
  framework::proto::BlockDesc block_proto;
  framework::BlockDesc block_desc(nullptr, &block_proto);
  block_desc.Proto()->set_parent_idx(-1);
  block_desc.Proto()->set_idx(0);

  for (auto& op_desc : bdesc.AllOps()) {
    auto* op = block_desc.AppendOp();
    *op->Proto() = *op_desc->Proto();
  }
  auto engine_key = std::to_string(
      std::hash<std::string>()(block_desc.Proto()->SerializeAsString()));
  return engine_key;
}

std::string GenerateEngineKey(const std::vector<std::string>& engine_inputs,
                              const std::vector<std::string>& engine_outputs,
                              int size) {
  std::string engine_hash_key = "";
  for (auto name : engine_inputs) {
    engine_hash_key += name;
  }
  for (auto name : engine_outputs) {
    engine_hash_key += name;
  }
  engine_hash_key += std::to_string(size);
  auto engine_key = std::to_string(std::hash<std::string>()(engine_hash_key));
  return engine_key;
}

void NgraphEngine::FuseNgraphOps(
    const framework::BlockDesc& block_desc,
    std::vector<std::unique_ptr<framework::OperatorBase>>* ops) {
  NgraphEngine::p_bdesc = &block_desc;
  auto intervals = NgraphOpIntervals(ops);
  std::string engine_key =
      GenerateEngineKey(feed_vars, fetch_vars, ops->size());
  for (auto it = intervals.rbegin(); it != intervals.rend(); ++it) {
    SubstituteNgraphOp(ops, engine_key, "", *it);
B
baojun 已提交
222 223 224 225 226
  }
}

NgraphEngine::NgraphEngine(const framework::Scope& scope,
                           const platform::Place& place,
227
                           const framework::ExecutionContext& ctx)
B
baojun 已提交
228 229 230 231 232 233 234
    : scope_(scope), place_(place) {
  var_in_node_map_ = std::make_shared<
      std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>();

  var_node_map_ = std::make_shared<
      std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>();

235
  GetNgFunction(ctx);
B
baojun 已提交
236 237
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
void NgraphEngine::Prepare(const framework::ExecutionContext& ctx) {
  auto interval = ctx.Attr<std::vector<int>>("interval");
  std::string serialized_graph = ctx.Attr<std::string>("graph");

  auto input_vars = ctx.Inputs("Xs");
  if (!input_vars.empty()) {
    feed_vars = input_vars;
    var_in_ = input_vars;
  }
  auto output_vars = ctx.Outputs("Ys");
  if (!output_vars.empty()) {
    var_out_ = output_vars;
  }

  framework::proto::BlockDesc block_proto;
  if (!serialized_graph.empty()) block_proto.ParseFromString(serialized_graph);
  framework::BlockDesc block_desc(nullptr, &block_proto);
  if (!serialized_graph.empty()) {
    NgraphEngine::p_bdesc = &block_desc;
  }

259
  for (auto& var : p_bdesc->AllVars()) {
B
baojun 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    if (!(var->GetType() == framework::proto::VarType::SELECTED_ROWS ||
          var->GetType() == framework::proto::VarType::LOD_TENSOR ||
          var->GetType() == framework::proto::VarType::LOD_TENSOR_ARRAY)) {
      continue;
    }

    auto var_name = var->Name();
    if (var->Name() == framework::kEmptyVarName) {
      continue;
    }

    if (var_name != framework::kFeedOpType &&
        var_name != framework::kFetchOpType) {
      auto pd_type = var->GetDataType();
      if (pd2ng_type_map.find(pd_type) == pd2ng_type_map.end()) {
        PADDLE_THROW("Data type of var %s not found in pd2ng_type_map",
                     var_name);
      }
      var_type_map_[var_name] = pd2ng_type_map[pd_type];
    }

    if (var->Persistable()) {
      persistables_.insert(var->Name());
    }
  }

286 287 288
  std::vector<paddle::framework::OpDesc*> ops_desc;
  for (auto op_desc : p_bdesc->AllOps()) {
    ops_desc.emplace_back(op_desc);
B
baojun 已提交
289
    if (op_desc->Type().find("_grad") != std::string::npos) {
290
      is_training = true;
291
      this->is_test_ = false;
B
baojun 已提交
292 293 294
    }
  }

295 296 297 298 299 300
  int idx = interval[0];
  while (idx < interval[1]) {
    this->fused_ops_.emplace_back(
        framework::OpRegistry::CreateOp(*(ops_desc[idx])));
    ++idx;
  }
B
baojun 已提交
301 302
  while (idx < static_cast<int>(ops_desc.size()) &&
         ops_desc.at(idx)->Type() != framework::kFetchOpType) {
303 304
    auto op_desc = ops_desc.at(idx);
    for (auto& var_name_item : op_desc->Inputs()) {
B
baojun 已提交
305
      for (auto& var_name : var_name_item.second) {
306
        this->post_op_inputs_.insert(var_name);
B
baojun 已提交
307 308
      }
    }
309
    ++idx;
B
baojun 已提交
310
  }
311

312 313 314 315 316 317 318 319 320
  if (var_in_.empty() && var_out_.empty()) {
    BuildNgIO(ops_desc, interval);
  }
  for (size_t i = 0; i < var_in_.size(); ++i) {
    auto var_name = var_in_[i];
    if (persistables_.find(var_name) == persistables_.end()) {
      var_in_updates_.emplace_back(i);
    }
  }
B
baojun 已提交
321 322
}

323 324
void NgraphEngine::BuildNgIO(const std::vector<framework::OpDesc*>& ops_desc,
                             const std::vector<int>& interval) {
B
baojun 已提交
325 326
  std::unordered_set<std::string> inputs;
  std::unordered_set<std::string> outputs;
327 328
  for (int i = interval[0]; i < interval[1]; ++i) {
    auto op = ops_desc[i];
B
baojun 已提交
329 330 331 332 333 334
    for (auto& var_name_item : op->Inputs()) {
      for (auto& var_name : var_name_item.second) {
        inputs.insert(var_name);
        const bool is_output = outputs.find(var_name) != outputs.end();
        if (!is_output &&
            std::find(var_in_.begin(), var_in_.end(), var_name) ==
335 336
                var_in_.end() &&
            scope_.FindVar(var_name)) {
B
baojun 已提交
337
          // fill var_in here to keep lhs and rhs order
338
          this->var_in_.emplace_back(var_name);
B
baojun 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
        }
      }
    }

    for (auto& var_name_item : op->Outputs()) {
      PADDLE_ENFORCE_LE(var_name_item.second.size(), 1,
                        "op %s has more than 1 output - Not handling yet",
                        op->Type());
      for (auto& var_name : var_name_item.second) {
        outputs.insert(var_name);
      }
    }
  }

  // var_out.clear();
354 355
  for (int i = interval[0]; i < interval[1]; ++i) {
    auto op = ops_desc[i];
B
baojun 已提交
356 357 358 359 360
    for (auto& var_name_item : op->Outputs()) {
      PADDLE_ENFORCE_LE(var_name_item.second.size(), 1,
                        "op %s has more than 1 output - Not handling yet",
                        op->Type());
      for (auto& var_name : var_name_item.second) {
361 362 363 364 365 366 367 368 369 370 371
        if (this->is_test_) {
          if (post_op_inputs_.find(var_name) != post_op_inputs_.end() ||
              find(fetch_vars.begin(), fetch_vars.end(), var_name) !=
                  fetch_vars.end()) {
            this->var_out_.emplace_back(var_name);
          }
        } else {
          if (find(fetch_vars.begin(), fetch_vars.end(), var_name) !=
                  fetch_vars.end() ||
              post_op_inputs_.find(var_name) != post_op_inputs_.end() ||
              persistables_.find(var_name) != persistables_.end()) {
372
            this->var_out_.emplace_back(var_name);
373
          }
B
baojun 已提交
374 375 376 377
        }
      }
    }
  }
378 379 380 381 382 383 384 385 386
  // remove output duplicates
  std::unordered_set<std::string> var_out_set;
  for (int i = static_cast<int>(var_out_.size()) - 1; i >= 0; --i) {
    std::string var_name = var_out_.at(i);
    if (var_out_set.count(var_name)) {
      var_out_.erase(var_out_.begin() + i);
    }
    var_out_set.insert(var_name);
  }
B
baojun 已提交
387 388
}

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
void NgraphEngine::GetNgInputShape() {
  for (auto& var_name : var_in_) {
    auto* var = scope_.FindVar(var_name);
    if (var && var->IsType<framework::LoDTensor>()) {
      auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      auto sp = Ddim2Shape(tensor_pd->dims());
      auto ng_type = var_type_map_[var_name];
      auto prm = std::make_shared<ngraph::op::Parameter>(ng_type, sp, true);
      (*var_node_map_)[var_name] = prm;
      (*var_in_node_map_)[var_name] = prm;
    }
  }
}

void NgraphEngine::BuildNgNodes() {
  for (auto& op : fused_ops_) {
    for (auto& var_name_item : op->Outputs()) {
      for (auto& var_name : var_name_item.second) {
        if (var_node_map_->find(var_name) == var_node_map_->end()) {
          auto* var = scope_.FindVar(var_name);
          if (var && var->IsType<framework::LoDTensor>()) {
            auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
            auto& ddim = tensor_pd->dims();
            auto ng_shape = Ddim2Shape(ddim);
            auto ng_type = var_type_map_[var_name];
            auto prm = std::make_shared<ngraph::op::Parameter>(ng_type,
                                                               ng_shape, true);
            (*var_node_map_)[var_name] = prm;
          }
        }
      }
    }
  }
  NgraphBridge ngb(var_node_map_);
  for (auto& op : fused_ops_) {
    ngb.BuildNgNode(op);
  }
}

428 429
std::shared_ptr<ngraph::Function> NgraphEngine::BuildNgFunction(
    const framework::ExecutionContext& ctx) {
430
  Prepare(ctx);
431
  GetNgInputShape();
B
baojun 已提交
432 433 434 435 436
  BuildNgNodes();
  ngraph::NodeVector func_outputs;
  ngraph::ParameterVector func_inputs;

  for (auto& vo : var_out_) {
437
    func_outputs.emplace_back(var_node_map_->at(vo));
B
baojun 已提交
438 439 440 441 442 443
  }

  for (auto& vi : var_in_) {
    std::shared_ptr<ngraph::op::Parameter> prm =
        std::dynamic_pointer_cast<ngraph::op::Parameter>(
            var_in_node_map_->at(vi));
444
    func_inputs.emplace_back(prm);
B
baojun 已提交
445 446
  }

447 448 449 450
  return std::make_shared<ngraph::Function>(func_outputs, func_inputs);
}

void NgraphEngine::ClearNgCache() {
451 452 453
  auto& engine_cache = main_engine_cache::fetch();
  auto& t_in_cache_ = main_t_in_cache::fetch();

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
  auto it = engine_cache.begin();
  while (it != engine_cache.end()) {
    auto ng_engine = it->second;
    backend_->remove_compiled_function(ng_engine.ngraph_handle);
    ++it;
  }
  engine_cache.clear();
  auto it_tensor = t_in_cache_.begin();
  while (it_tensor != t_in_cache_.end()) {
    auto t_vec = it_tensor->second;
    for (auto t_in : t_vec) {
      t_in.reset();
    }
    ++it_tensor;
  }
  t_in_cache_.clear();
B
baojun 已提交
470 471
}

472 473 474
void NgraphEngine::GetNgFunction(const framework::ExecutionContext& ctx) {
  auto interval = ctx.Attr<std::vector<int>>("interval");
  std::string engine_key = ctx.Attr<std::string>("engine_key");
475 476

  // set to flase, to debug cache or recompile everytime.
477
  bool use_cache = true;
478 479 480 481 482 483 484 485 486 487
  if (!use_cache) ClearNgCache();

  this->func_cache_key_ = "";
  for (int i = 0; i < static_cast<int>(feed_vars.size()); ++i) {
    auto* var = scope_.FindVar(feed_vars[i]);
    if (var && var->IsType<framework::LoDTensor>()) {
      auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      auto dims = tensor_pd->dims();
      for (int j = 0; j < dims.size(); ++j) {
        func_cache_key_ += std::to_string(dims[j]);
B
baojun 已提交
488 489
      }
    }
490 491 492 493 494
  }
  func_cache_key_ += std::to_string(interval[0]) + "_" +
                     std::to_string(interval[1]) + engine_key;
  func_cache_key_ = std::to_string(std::hash<std::string>()(func_cache_key_));

495 496
  auto& engine_cache = main_engine_cache::fetch();

497 498 499 500 501 502 503 504
  if (engine_cache.find(func_cache_key_) != engine_cache.end()) {
    if (engine_cache[func_cache_key_].persistables.size() == 0) {
      ClearNgCache();
    } else {
      auto var_name = engine_cache[func_cache_key_].persistables.begin();
      framework::Variable* var = scope_.FindVar(*var_name);
      if (var != pre_var_ptr) {
        ClearNgCache();
505
      }
506
      pre_var_ptr = var;
507
    }
508
  }
509

510 511 512 513 514 515 516
  if (engine_cache.find(func_cache_key_) == engine_cache.end()) {
    if (engine_cache.size() > 5) ClearNgCache();
    auto func = BuildNgFunction(ctx);
    // Due to optimization backend may produce results in other layouts,
    // make sure we get default layout for results.
    for (auto& r : func->get_results()) {
      r->set_needs_default_layout(true);
B
baojun 已提交
517
    }
518 519 520 521 522 523
    engine_cache[func_cache_key_].ngraph_handle = backend_->compile(func);
    engine_cache[func_cache_key_].persistables = this->persistables_;
    engine_cache[func_cache_key_].var_in_updates = this->var_in_updates_;
    engine_cache[func_cache_key_].var_in = this->var_in_;
    engine_cache[func_cache_key_].var_out = this->var_out_;
    engine_cache[func_cache_key_].is_test = this->is_test_;
B
baojun 已提交
524 525 526 527 528
  }
}

void NgraphEngine::Run(const framework::Scope& scope,
                       const platform::Place& place) const {
529
  std::shared_ptr<ngraph::runtime::Executable> ng_handle;
530 531 532 533 534 535
  const std::set<std::string>* p_persistables;
  const std::vector<size_t>* p_var_in_updates;
  const std::vector<std::string>* p_var_in;
  const std::vector<std::string>* p_var_out;
  bool is_test;

536 537 538
  auto& engine_cache = main_engine_cache::fetch();
  auto& t_in_cache_ = main_t_in_cache::fetch();

539 540 541 542 543 544 545 546
  PADDLE_ENFORCE(engine_cache.find(func_cache_key_) != engine_cache.end(),
                 "Cannot find cached data to run ngraph function");
  ng_handle = engine_cache[func_cache_key_].ngraph_handle;
  p_persistables = &(engine_cache[func_cache_key_].persistables);
  p_var_in_updates = &(engine_cache[func_cache_key_].var_in_updates);
  p_var_in = &(engine_cache[func_cache_key_].var_in);
  p_var_out = &(engine_cache[func_cache_key_].var_out);
  is_test = engine_cache[func_cache_key_].is_test;
B
baojun 已提交
547

548 549 550
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>>* p_t_in;
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>> t_in = {};

551 552 553
  auto m_parameters = ng_handle->get_parameters();
  auto m_results = ng_handle->get_results();
  if (is_test && t_in_cache_.find(func_cache_key_) != t_in_cache_.end()) {
554 555 556 557 558 559 560 561 562 563 564 565 566
    p_t_in = &(t_in_cache_[func_cache_key_]);
    for (size_t i = 0; i < p_var_in_updates->size(); ++i) {
      int index = p_var_in_updates->at(i);
      auto vi = p_var_in->at(index);
      auto sp = m_parameters[index]->get_shape();
      auto ng_type = m_parameters[index]->get_element_type();
      std::shared_ptr<ngraph::runtime::Tensor> ti;
      auto* var = scope.FindVar(vi);
      if (var && var->IsType<framework::LoDTensor>()) {
        auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var);
        void* pd_arr = tensor_pd->mutable_data(place, ng2pd_type_map[ng_type]);
        ti = backend_->create_tensor(ng_type, sp, pd_arr);
        (*p_t_in)[index] = ti;
B
baojun 已提交
567
      } else {
568
        PADDLE_THROW("Cannot find var or tensor with var name %s", vi);
B
baojun 已提交
569
      }
570 571
    }
  } else {
572
    if (is_test) {
573
      p_t_in = &(t_in_cache_[func_cache_key_]);
B
baojun 已提交
574
    } else {
575
      p_t_in = &t_in;
B
baojun 已提交
576
    }
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594

    for (size_t i = 0; i < p_var_in->size(); ++i) {
      auto vi = p_var_in->at(i);
      auto sp = m_parameters[i]->get_shape();
      auto ng_type = m_parameters[i]->get_element_type();
      std::shared_ptr<ngraph::runtime::Tensor> ti;
      auto* var = scope.FindVar(vi);
      if (var && var->IsType<framework::LoDTensor>()) {
        auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var);
        void* pd_arr = tensor_pd->mutable_data(place, ng2pd_type_map[ng_type]);
        PADDLE_ENFORCE(sp == Ddim2Shape(tensor_pd->dims()),
                       "Ensure ngraph tensor layout align with paddle tensor");
        ti = backend_->create_tensor(ng_type, sp, pd_arr);
      } else {
        PADDLE_THROW("Cannot find var or tensor with var name %s", vi);
      }
      bool is_persistable =
          (p_persistables->find(vi) != p_persistables->end()) ? true : false;
595
      if (!is_training && is_test && is_persistable) {
596 597 598
        ti->set_stale(false);
      }
      (*p_t_in).emplace_back(ti);
B
baojun 已提交
599 600 601
    }
  }

602 603
  for (auto& op : fused_ops_) {
    framework::RuntimeContext ctx(op->Inputs(), op->Outputs(), scope_);
604
    op->RuntimeInferShape(scope_, place_, ctx);
605 606
  }

607 608 609
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>> t_out = {};
  for (size_t i = 0; i < p_var_out->size(); ++i) {
    auto vo = p_var_out->at(i);
B
baojun 已提交
610 611
    auto* var = scope.FindVar(vo);
    if (var && var->IsType<framework::LoDTensor>()) {
612 613
      auto sp = m_results[i]->get_shape();
      var->GetMutable<framework::LoDTensor>()->Resize(Shape2Ddim(sp));
B
baojun 已提交
614
      auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var);
615 616 617 618 619
      auto ng_type = m_results[i]->get_element_type();
      void* pd_arr = tensor_pd->mutable_data(place, ng2pd_type_map[ng_type]);
      std::shared_ptr<ngraph::runtime::Tensor> to =
          backend_->create_tensor(ng_type, sp, pd_arr);
      t_out.emplace_back(to);
B
baojun 已提交
620 621 622 623 624
    } else {
      PADDLE_THROW("Cannot find var or tensor with var name %s", vo);
    }
  }

625
  ng_handle->call(t_out, *p_t_in);
B
baojun 已提交
626 627 628
}  // NgraphEngine::Run
}  // namespace operators
}  // namespace paddle