activation_op.h 4.1 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

Q
qijun 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
template <typename Place, typename T, typename Functor>
class ActivationKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Y = context.Output<framework::Tensor>("Y");
    Y->mutable_data<T>(context.GetPlace());

    auto x = framework::EigenVector<T>::Flatten(*X);
    auto y = framework::EigenVector<T>::Flatten(*Y);
    auto place = context.GetEigenDevice<Place>();
    Functor functor;
    functor(place, x, y);
  }
};

template <typename Place, typename T, typename Functor>
class ActivationGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Y = context.Input<framework::Tensor>("Y");
    auto* dY = context.Input<framework::Tensor>(framework::GradVarName("Y"));
    auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
    dX->mutable_data<T>(context.GetPlace());

    auto dy = framework::EigenVector<T>::Flatten(*dY);
    auto x = framework::EigenVector<T>::Flatten(*X);
    auto y = framework::EigenVector<T>::Flatten(*Y);
    auto dx = framework::EigenVector<T>::Flatten(*dX);
    auto place = context.GetEigenDevice<Place>();
    Functor functor;
    functor(place, x, y, dy, dx);
  }
};

Q
qijun 已提交
58
struct SigmoidFunctor {
Q
qijun 已提交
59 60 61 62 63 64
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = 1. / (1. + (-x).exp());
  }
};

Q
qijun 已提交
65
struct SigmoidGradFunctor {
Q
qijun 已提交
66 67 68 69 70 71
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
    dx.device(d) = dy * y * (1. - y);
  }
};

Q
qijun 已提交
72
struct ExpFunctor {
Q
qijun 已提交
73 74 75 76 77 78
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = x.exp();
  }
};

Q
qijun 已提交
79
struct ExpGradFunctor {
Q
qijun 已提交
80 81 82 83 84 85
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
    dx.device(d) = y;
  }
};

Q
qijun 已提交
86 87 88 89 90 91 92
template <typename T>
struct ReluFunctor {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = x.cwiseMax(static_cast<T>(0));
  }
};
Q
qijun 已提交
93

Q
qijun 已提交
94 95 96 97 98 99 100
template <typename T>
struct ReluGradFunctor {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
    dx.device(d) = dy * (x > static_cast<T>(0)).template cast<T>();
  }
};
Q
qijun 已提交
101

Q
qijun 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
struct TanhFunctor {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = x.tanh();
  }
};

template <typename T>
struct TanhGradFunctor {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
    dx.device(d) = dy * (T(1) - y * y);
  }
};

struct SqrtFunctor {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = x.sqrt();
  }
};

template <typename T>
struct SqrtGradFunctor {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
    const T y_conj = Eigen::numext::conj(y);
    dx.device(d) = static_cast<T>(0.5) * dy / y_conj;
  }
};

Q
qijun 已提交
133 134
}  // namespace operators
}  // namespace paddle