p_norm_op.h 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

inline void GetDims(const framework::DDim& dim, int axis, int* pre, int* n,
myq406450149's avatar
myq406450149 已提交
23
                    int* post, bool asvector) {
24 25 26
  *pre = 1;
  *post = 1;
  *n = dim[axis];
myq406450149's avatar
myq406450149 已提交
27 28 29 30 31 32 33 34 35
  if (asvector) {
    *n = product(dim);
  } else {
    for (int i = 0; i < axis; ++i) {
      (*pre) *= dim[i];
    }
    for (int i = axis + 1; i < dim.size(); ++i) {
      (*post) *= dim[i];
    }
36 37 38 39 40 41 42 43 44 45 46 47 48 49
  }
}

template <typename DeviceContext, typename T>
class PnormKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in_x = ctx.Input<framework::Tensor>("X");
    auto* out_norm = ctx.Output<framework::Tensor>("Out");
    out_norm->mutable_data<T>(ctx.GetPlace());

    auto xdim = in_x->dims();
    float porder = ctx.Attr<float>("porder");
    int axis = ctx.Attr<int>("axis");
myq406450149's avatar
myq406450149 已提交
50
    bool asvector = ctx.Attr<bool>("asvector");
51 52
    if (axis < 0) axis = xdim.size() + axis;
    int pre, n, post;
myq406450149's avatar
myq406450149 已提交
53
    GetDims(xdim, axis, &pre, &n, &post, asvector);
54 55 56 57 58 59 60 61 62 63 64 65

    auto* place = ctx.template device_context<DeviceContext>().eigen_device();

    Eigen::DSizes<int, 3> shape(pre, n, post);
    Eigen::DSizes<int, 2> norm_shape(pre, post);

    auto x_e = framework::EigenVector<T>::Flatten(*in_x);
    auto norm_e = framework::EigenVector<T>::Flatten(*out_norm);

    auto x = x_e.reshape(shape);
    auto norm = norm_e.reshape(norm_shape);

66 67 68 69
    // p=0 means number of non-zero elements of (x)
    // p=inf means the maximum of |x|
    // p=-inf means the minimum of |x|
    // otherwise, Lp-norm = pow(sum(pow(|x|, p)), 1/p)
70
    Eigen::DSizes<int, 1> rdim(1);
71 72 73 74 75 76 77 78 79
    if (porder == 0) {
      norm.device(*place) = (x != x.constant(0)).template cast<T>().sum(rdim);
    } else if (porder == INFINITY) {
      norm.device(*place) = x.abs().maximum(rdim);
    } else if (porder == -INFINITY) {
      norm.device(*place) = x.abs().minimum(rdim);
    } else {
      norm.device(*place) = x.abs().pow(porder).sum(rdim).pow(1.0f / porder);
    }
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
  }
};

template <typename DeviceContext, typename T, typename AttrType = T>
class PnormGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in_x = ctx.Input<framework::Tensor>("X");
    auto* in_norm = ctx.Input<framework::Tensor>("Out");
    auto* in_norm_dy =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* out_dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    out_dx->mutable_data<T>(ctx.GetPlace());

    T eps = static_cast<T>(ctx.Attr<float>("epsilon"));
    auto xdim = in_x->dims();
    float porder = ctx.Attr<float>("porder");

    int axis = ctx.Attr<int>("axis");
myq406450149's avatar
myq406450149 已提交
99
    bool asvector = ctx.Attr<bool>("asvector");
100 101
    if (axis < 0) axis = xdim.size() + axis;
    int pre, n, post;
myq406450149's avatar
myq406450149 已提交
102
    GetDims(xdim, axis, &pre, &n, &post, asvector);
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    Eigen::DSizes<int, 3> shape(pre, n, post);
    Eigen::DSizes<int, 3> rshape(pre, 1, post);

    auto* place = ctx.template device_context<DeviceContext>().eigen_device();

    auto x_e = framework::EigenVector<T>::Flatten(*in_x);
    auto dx_e = framework::EigenVector<T>::Flatten(*out_dx);
    auto norm_e = framework::EigenVector<T>::Flatten(*in_norm);
    auto norm_dy_e = framework::EigenVector<T>::Flatten(*in_norm_dy);

    auto x = x_e.reshape(shape);
    auto dx = dx_e.reshape(shape);
    auto norm = norm_e.reshape(rshape);
    auto norm_dy = norm_dy_e.reshape(rshape);

    Eigen::DSizes<int, 1> rdim(1);
    Eigen::DSizes<int, 3> bcast(1, n, 1);

121 122 123 124 125 126 127 128 129 130 131 132 133 134
    if (porder == 0) {
      math::SetConstant<DeviceContext, T> set_zero;
      auto& dev_ctx = ctx.template device_context<DeviceContext>();
      set_zero(dev_ctx, out_dx, static_cast<T>(0));
    } else if (porder == INFINITY || porder == -INFINITY) {
      dx.device(*place) =
          (x.abs() == norm.broadcast(bcast)).template cast<T>() * x.sign() *
          norm_dy.broadcast(bcast);
    } else {
      dx.device(*place) =
          (x.abs()).pow(porder - 1.0f) /
          ((norm.broadcast(bcast)).pow(porder - 1.0f) + x.constant(eps));
      dx.device(*place) = dx * norm_dy.broadcast(bcast) * x.sign();
    }
135 136 137 138
  }
};
}  // namespace operators
}  // namespace paddle