analyzer_resnet50_tester.cc 3.4 KB
Newer Older
T
Tao Luo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <fstream>
#include <iostream>
#include "paddle/fluid/inference/tests/api/tester_helper.h"

namespace paddle {
namespace inference {
namespace analysis {

T
Tao Luo 已提交
23
void SetConfig(AnalysisConfig *cfg) {
T
Tao Luo 已提交
24 25 26 27 28 29
  cfg->param_file = FLAGS_infer_model + "/params";
  cfg->prog_file = FLAGS_infer_model + "/model";
  cfg->use_gpu = false;
  cfg->device = 0;
  cfg->enable_ir_optim = true;
  cfg->specify_input_name = true;
T
Tao Luo 已提交
30
#ifdef PADDLE_WITH_MKLDNN
T
Tao Luo 已提交
31
  cfg->_use_mkldnn = FLAGS_use_MKLDNN;
T
Tao Luo 已提交
32
#endif
T
Tao Luo 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
}

void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");

  PaddleTensor input;
  // channel=3, height/width=318
  std::vector<int> shape({FLAGS_batch_size, 3, 318, 318});
  input.shape = shape;
  input.dtype = PaddleDType::FLOAT32;

  // fill input data, for profile easily, do not use random data here.
  size_t size = FLAGS_batch_size * 3 * 318 * 318;
  input.data.Resize(size * sizeof(float));
  float *input_data = static_cast<float *>(input.data.data());
  for (size_t i = 0; i < size; i++) {
    *(input_data + i) = static_cast<float>(i) / size;
  }

  std::vector<PaddleTensor> input_slots;
  input_slots.assign({input});
  (*inputs).emplace_back(input_slots);
}

// Easy for profiling independently.
TEST(Analyzer_resnet50, profile) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
  std::vector<PaddleTensor> outputs;

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  TestPrediction(cfg, input_slots_all, &outputs, FLAGS_num_threads);

  if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
    PADDLE_ENFORCE_EQ(outputs.size(), 1UL);
    size_t size = GetSize(outputs[0]);
    // output is a 512-dimension feature
    EXPECT_EQ(size, 512 * FLAGS_batch_size);
  }
}

// Check the fuse status
TEST(Analyzer_resnet50, fuse_statis) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
  int num_ops;
T
Tao Luo 已提交
80 81 82 83 84
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  auto fuse_statis = GetFuseStatis(
      static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
  EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
T
Tao Luo 已提交
85 86 87 88 89 90 91 92 93 94
}

// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_resnet50, compare) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareNativeAndAnalysis(cfg, input_slots_all);
T
Tao Luo 已提交
95 96 97 98
#ifdef PADDLE_WITH_MKLDNN
  // since default config._use_mkldnn=true in this case,
  // we should compare analysis_outputs in config._use_mkldnn=false
  // with native_outputs as well.
T
Tao Luo 已提交
99
  FLAGS_use_MKLDNN = false;
T
Tao Luo 已提交
100
  AnalysisConfig cfg1;
T
Tao Luo 已提交
101
  SetConfig(&cfg1);
T
Tao Luo 已提交
102
  CompareNativeAndAnalysis(cfg1, input_slots_all);
T
Tao Luo 已提交
103
  FLAGS_use_MKLDNN = true;
T
Tao Luo 已提交
104
#endif
T
Tao Luo 已提交
105 106 107 108 109
}

}  // namespace analysis
}  // namespace inference
}  // namespace paddle