fusion_seqpool_concat_op.cc 5.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include "paddle/fluid/operators/fused/fusion_seqpool_concat_op.h"
#include <string>
#include <vector>
#include "paddle/fluid/operators/jit/kernels.h"

namespace paddle {
namespace operators {

void FusionSeqPoolConcatOp::InferShape(
    framework::InferShapeContext* ctx) const {
  PADDLE_ENFORCE_GE(ctx->Inputs("X").size(), 1UL,
T
tensor-tang 已提交
26
                    "Inputs(X) of FusionSeqPoolConcatOp should not be empty.");
T
tensor-tang 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Output(Out) of FusionSeqPoolConcatOp should not be null.");
  int axis = ctx->Attrs().Get<int>("axis");
  PADDLE_ENFORCE_EQ(axis, 1,
                    "FusionSeqPoolConcatOp only supports concat axis=1 yet.");

  auto ins_dims = ctx->GetInputsDim("X");
  const size_t n = ins_dims.size();
  PADDLE_ENFORCE_GT(n, 0UL, "Input tensors count should > 0.");
  if (n == 1) {
    LOG(WARNING) << "Only have one input, may waste memory";
  }

  // The output height should be confirmed in Compute,
  // since input lod is not accessible here.
  PADDLE_ENFORCE_EQ(ins_dims[0].size(), 2UL,
                    "The dims size of first input should be 2.");
  ctx->SetOutputDim("Out", {-1, ins_dims[0][axis] * static_cast<int>(n)});
}

framework::OpKernelType FusionSeqPoolConcatOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
      framework::GetDataTypeOfVar(ctx.MultiInputVar("X")[0]), ctx.GetPlace());
}

void FusionSeqPoolConcatOpMaker::Make() {
  AddInput("X", "(LoDTensor) Input tensors of this operator.").AsDuplicable();
  AddOutput("Out", "(LoDTensor) Output tensor of concat operator.");
  AddAttr<std::string>("pooltype",
T
tensor-tang 已提交
57
                       "(string, default 'SUM') some of the pooling "
T
tensor-tang 已提交
58 59 60 61
                       "pooltype of SequencePoolOp.")
      .SetDefault("SUM")
      .InEnum({"AVERAGE", "SUM", "SQRT"});
  AddAttr<int>("axis",
T
tensor-tang 已提交
62 63
               "The axis along which the input tensors will be concatenated. "
               "Only supports concat axis=1 yet.")
T
tensor-tang 已提交
64 65 66 67 68 69 70 71 72 73 74 75
      .SetDefault(1);
  AddComment(R"DOC(
Fusion Sequence Pool of pooltype(sum, average and sqrt) and Concat Operator.
)DOC");
}

template <typename T>
class FusionSeqPoolConcatKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto ins = ctx.MultiInput<LoDTensor>("X");
    auto* out = ctx.Output<LoDTensor>("Out");
T
tensor-tang 已提交
76
    std::string pooltype = ctx.Attr<std::string>("pooltype");
T
tensor-tang 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    auto x0_lod = ins[0]->lod();
    auto x0_dims = ins[0]->dims();
    auto y_dims = out->dims();
    size_t bs = x0_lod[0].size() - 1;
    out->Resize({static_cast<int64_t>(bs), y_dims[1]});
    framework::LoD y_lod(1);
    y_lod[0].resize(bs + 1);
    for (size_t i = 0; i <= bs; ++i) {
      y_lod[0][i] = i;
    }
    out->set_lod(y_lod);
    auto place = ctx.GetPlace();
    T* y_data = out->mutable_data<T>(place);

    int w = ins[0]->numel() / x0_dims[0];
    PADDLE_ENFORCE_EQ(y_dims[1] % w, 0,
                      "The output of dims[1] should be dividable of w");
    jit::seq_pool_attr_t attr(w, jit::SeqPoolType::kSum);
T
tensor-tang 已提交
95 96 97 98 99
    if (pooltype == "AVERAGE") {
      attr.type = jit::SeqPoolType::kAvg;
    } else if (pooltype == "SQRT") {
      attr.type = jit::SeqPoolType::kSqrt;
    }
T
tensor-tang 已提交
100 101 102 103
    auto seqpool =
        jit::Get<jit::kSeqPool, jit::SeqPoolTuples<T>, platform::CPUPlace>(
            attr);
    size_t n = ins.size();
T
tensor-tang 已提交
104
    size_t dst_step_size = n * w;
T
tensor-tang 已提交
105 106 107 108 109 110 111 112 113 114 115 116
    for (size_t i = 0; i < n; ++i) {
      auto x_dims = ins[i]->dims();
      auto x_lod = ins[i]->lod()[0];
      const T* src = ins[i]->data<T>();
      T* dst = y_data + i * w;
      PADDLE_ENFORCE_EQ(static_cast<int>(ins[i]->numel() / x_dims[0]), w,
                        "Width of all inputs should be equal.");
      PADDLE_ENFORCE_EQ(x_lod.size(), bs + 1,
                        "Batchsize of all inputs should be equal.");
      for (size_t j = 0; j < bs; ++j) {
        attr.h = static_cast<int>(x_lod[j + 1] - x_lod[j]);
        seqpool(src, dst, &attr);
T
tensor-tang 已提交
117
        dst += dst_step_size;
T
tensor-tang 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
        src += attr.h * attr.w;
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fusion_seqpool_concat, ops::FusionSeqPoolConcatOp,
                  ops::FusionSeqPoolConcatOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);

REGISTER_OP_CPU_KERNEL(fusion_seqpool_concat,
                       ops::FusionSeqPoolConcatKernel<float>,
                       ops::FusionSeqPoolConcatKernel<double>);