lrn_mkldnn_op.cc 8.0 KB
Newer Older
T
Tomasz Patejko 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/lrn_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;

25 26 27 28 29 30 31 32 33 34 35 36 37 38
namespace {
template <typename T, typename... Args>
std::shared_ptr<T> insert_to_context(const std::string& key,
                                     const MKLDNNDeviceContext& dev_ctx,
                                     Args&&... args) {
  auto p = std::static_pointer_cast<T, void>(dev_ctx.GetBlob(key));

  if (!p) {
    p = std::make_shared<T>(args...);
    dev_ctx.SetBlob(key, std::static_pointer_cast<void, T>(p));
  }

  return p;
}
39 40 41 42 43 44 45 46

template <typename... Args>
void run_primitive(Args&&... args) {
  auto forward_op = mkldnn::lrn_forward{args...};

  std::vector<mkldnn::primitive> pipeline = {forward_op};
  mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
47 48
}  // namespace

T
Tomasz Patejko 已提交
49 50 51 52
template <typename T>
class LRNMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
M
minqiyang 已提交
53
    PADDLE_ENFORCE(std::is_same<typename T, float>::value,
T
Tomasz Patejko 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
                   "MKLDNN LRN must use float data.");
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "MKLDNN LRN must use CPUPlace.");

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto x = ctx.Input<Tensor>("X");
    auto out = ctx.Output<Tensor>("Out");
    auto mid = ctx.Output<Tensor>("MidOut");

    auto input_data = x->data<T>();
    auto output_data = out->mutable_data<T>(ctx.GetPlace());
    mid->mutable_data<T>(ctx.GetPlace());

    const int n = ctx.Attr<int>("n");
    const float alpha = ctx.Attr<float>("alpha");
    const float beta = ctx.Attr<float>("beta");
    const float k = ctx.Attr<float>("k");
73
    const bool is_test = ctx.Attr<bool>("is_test");
T
Tomasz Patejko 已提交
74 75 76 77 78 79 80 81 82 83 84 85

    auto e_mid = framework::EigenTensor<T, 4>::From(*mid);
    e_mid = e_mid.constant(k);

    auto dims = paddle::framework::vectorize2int(x->dims());

    auto src_md = paddle::platform::MKLDNNMemDesc(
        dims, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);

    auto dst_md = paddle::platform::MKLDNNMemDesc(
        dims, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);

86 87 88 89 90 91 92
    auto forward_desc = mkldnn::lrn_forward::desc{mkldnn::prop_kind::forward,
                                                  mkldnn::lrn_across_channels,
                                                  src_md,
                                                  n,
                                                  alpha,
                                                  beta,
                                                  k};
T
Tomasz Patejko 已提交
93 94 95 96 97

    auto src_memory_pd = mkldnn::memory::primitive_desc{src_md, mkldnn_engine};
    auto dst_memory = mkldnn::memory{{dst_md, mkldnn_engine},
                                     static_cast<void*>(output_data)};

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    if (!is_test) {
      const std::string key = ctx.op().Output("Out");
      const std::string key_src_memory = key + "@lrn_src_memory";
      const std::string key_pd = key + "@lrn_pd";
      const std::string key_workspace_memory = key + "@lrn_workspace_memory";

      auto forward_pd = insert_to_context<mkldnn::lrn_forward::primitive_desc>(
          key_pd, dev_ctx, forward_desc, mkldnn_engine);

      auto src_memory = insert_to_context<mkldnn::memory>(
          key_src_memory, dev_ctx, src_memory_pd);

      src_memory->set_data_handle(
          static_cast<void*>(const_cast<T*>(input_data)));

      auto workspace_memory = insert_to_context<mkldnn::memory>(
          key_workspace_memory, dev_ctx,
          forward_pd->workspace_primitive_desc());

117
      run_primitive(*forward_pd, *src_memory, *workspace_memory, dst_memory);
118 119 120 121 122 123 124
    } else {
      auto forward_pd =
          mkldnn::lrn_forward::primitive_desc{forward_desc, mkldnn_engine};
      auto src_memory = mkldnn::memory{
          src_memory_pd, static_cast<void*>(const_cast<T*>(input_data))};
      auto workspace_memory =
          mkldnn::memory{forward_pd.workspace_primitive_desc()};
T
Tomasz Patejko 已提交
125

126
      run_primitive(forward_pd, src_memory, workspace_memory, dst_memory);
127
    }
T
Tomasz Patejko 已提交
128 129 130 131 132 133 134 135 136 137 138
  }
};

template <typename T>
class LRNMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(std::is_same<T, float>::value,
                   "MKLDNN LRN must use float data.");
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "MKLDNN LRN must use CPUPlace.");
139 140 141
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");
T
Tomasz Patejko 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

    auto x = ctx.Input<Tensor>("X");

    auto out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    const std::string key = ctx.op().Input("Out");
    const std::string key_src_memory = key + "@lrn_src_memory";
    const std::string key_pd = key + "@lrn_pd";
    const std::string key_workspace_memory = key + "@lrn_workspace_memory";

    const int n = ctx.Attr<int>("n");
    const float alpha = ctx.Attr<float>("alpha");
    const float beta = ctx.Attr<float>("beta");
    const float k = ctx.Attr<float>("k");

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto x_grad_data = x_grad->mutable_data<T>(ctx.GetPlace());
    auto out_grad_data = out_grad->data<T>();

    auto dims = paddle::framework::vectorize2int(x->dims());

    auto src_md = paddle::platform::MKLDNNMemDesc(
        dims, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);

    auto diff_src_md = paddle::platform::MKLDNNMemDesc(
        dims, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);

    auto diff_dst_md = paddle::platform::MKLDNNMemDesc(
        dims, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);

    auto diff_dst_memory =
        mkldnn::memory{{diff_dst_md, mkldnn_engine},
                       static_cast<void*>(const_cast<float*>(out_grad_data))};

    auto diff_src_memory = mkldnn::memory{{diff_src_md, mkldnn_engine},
                                          static_cast<void*>(x_grad_data)};

    auto backward_desc = mkldnn::lrn_backward::desc{
183
        mkldnn::lrn_across_channels, src_md, diff_src_md, n, alpha, beta, k};
T
Tomasz Patejko 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

    auto forward_pd = dev_ctx.GetBlob(key_pd);

    auto backward_pd = mkldnn::lrn_backward::primitive_desc{
        backward_desc, mkldnn_engine,
        *static_cast<mkldnn::lrn_forward::primitive_desc*>(forward_pd.get())};

    std::shared_ptr<void> workspace_memory =
        dev_ctx.GetBlob(key_workspace_memory);

    auto src_memory = dev_ctx.GetBlob(key_src_memory);
    auto backward_op = mkldnn::lrn_backward{
        backward_pd, *static_cast<mkldnn::memory*>(src_memory.get()),
        diff_dst_memory, *static_cast<mkldnn::memory*>(workspace_memory.get()),
        diff_src_memory};

    std::vector<mkldnn::primitive> pipeline = {backward_op};
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(lrn, MKLDNN, paddle::platform::CPUPlace,
                   ops::LRNMKLDNNOpKernel<float>);
REGISTER_OP_KERNEL(lrn_grad, MKLDNN, paddle::platform::CPUPlace,
                   ops::LRNMKLDNNGradOpKernel<float>);