communicator.h 20.6 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <ThreadPool.h>
#include <stdint.h>
19

T
tangwei12 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32
#include <atomic>
#include <deque>
#include <map>
#include <memory>
#include <numeric>
#include <set>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

#include "gflags/gflags.h"
33
#include "paddle/fluid/distributed/ps/service/communicator/communicator_common.h"
34
#include "paddle/fluid/distributed/ps/service/ps_client.h"
Z
zhaocaibei123 已提交
35
#include "paddle/fluid/framework/channel.h"
T
tangwei12 已提交
36 37 38 39 40 41 42 43
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/split.h"
44 45
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
T
tangwei12 已提交
46

47 48 49 50 51 52 53
namespace paddle {
namespace distributed {
class PSClient;
struct CommContext;
}  // namespace distributed
}  // namespace paddle

T
tangwei12 已提交
54 55 56 57 58 59 60 61 62 63 64
DECLARE_bool(communicator_is_sgd_optimizer);

namespace paddle {
namespace distributed {

using Scope = framework::Scope;
using Variable = framework::Variable;

template <typename T>
class BlockingQueue {
 public:
S
seemingwang 已提交
65
  explicit BlockingQueue(size_t capacity) : capacity_(capacity) {
66 67
    PADDLE_ENFORCE_GT(capacity_,
                      0,
S
seemingwang 已提交
68 69 70
                      platform::errors::InvalidArgument(
                          "The capacity must be greater than 0."));
  }
T
tangwei12 已提交
71 72

  bool Push(const T &elem) {
S
seemingwang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    std::unique_lock<std::mutex> lock(mutex_);
    WaitForWrite(lock);

    queue_.push_back(elem);

    Notify();
    return true;
  }
  bool WaitForWrite(std::unique_lock<std::mutex> &lock) {  // NOLINT
    while (FullUnlocked()) {
      if (empty_waiters_ != 0) {
        empty_cond_.notify_one();
      }
      full_waiters_++;
      full_cond_.wait(lock);
      full_waiters_--;
T
tangwei12 已提交
89 90 91
    }
    return true;
  }
S
seemingwang 已提交
92 93 94 95 96 97 98 99
  bool WaitForRead(std::unique_lock<std::mutex> &lock) {  // NOLINT
    while (EmptyUnlocked()) {
      if (full_waiters_ != 0) {
        full_cond_.notify_one();
      }
      empty_waiters_++;
      empty_cond_.wait(lock);
      empty_waiters_--;
T
tangwei12 已提交
100 101 102
    }
    return true;
  }
S
seemingwang 已提交
103
  bool EmptyUnlocked() { return queue_.empty(); }
T
tangwei12 已提交
104

S
seemingwang 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
  bool FullUnlocked() { return queue_.size() >= capacity_; }
  void Notify() {
    if (empty_waiters_ != 0 && (!EmptyUnlocked())) {
      empty_cond_.notify_one();
    }
    if (full_waiters_ != 0 && (!FullUnlocked())) {
      full_cond_.notify_one();
    }
  }

  bool Push(T &&elem) {
    std::unique_lock<std::mutex> lock(mutex_);
    WaitForWrite(lock);
    queue_.emplace_back(std::move(elem));

    Notify();
    return true;
  }
T
tangwei12 已提交
123 124
  T Pop() {
    std::unique_lock<std::mutex> lock(mutex_);
S
seemingwang 已提交
125
    WaitForRead(lock);
T
tangwei12 已提交
126 127
    T rc(std::move(queue_.front()));
    queue_.pop_front();
S
seemingwang 已提交
128
    Notify();
T
tangwei12 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142
    return rc;
  }

  size_t Cap() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return capacity_;
  }

  size_t Size() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return queue_.size();
  }

 private:
S
seemingwang 已提交
143 144 145 146
  int empty_waiters_ = 0;
  int full_waiters_ = 0;
  std::condition_variable empty_cond_;
  std::condition_variable full_cond_;
T
tangwei12 已提交
147 148 149 150 151 152
  const size_t capacity_;
  std::deque<T> queue_;

  mutable std::mutex mutex_;
};

153 154
template <typename T,
          int MajorType = Eigen::RowMajor,
T
tangwei12 已提交
155 156 157 158 159 160
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

template <typename T>
inline void MergeVars(const std::string &var_name,
                      const std::vector<std::shared_ptr<Variable>> &vars,
161 162
                      Scope *scope,
                      bool merge_add = true) {
163
  PADDLE_ENFORCE_NE(
164 165
      vars.empty(),
      true,
166
      platform::errors::InvalidArgument("vector vars are empty."));
T
tangwei12 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  auto cpu_place = platform::CPUPlace();
  auto &var0 = vars[0];
  auto *out_var = scope->Var(var_name);

  if (var0->IsType<framework::LoDTensor>()) {
    auto dims = var0->Get<framework::LoDTensor>().dims();
    VLOG(3) << "merge " << var_name << " LoDTensor dims " << dims
            << "; merge add: " << merge_add;
    // init output tensor
    auto *out_t = out_var->GetMutable<framework::LoDTensor>();
    out_t->mutable_data<T>(dims, cpu_place);
    // check the input dims
    for (auto &var : vars) {
      auto &var_t = var->Get<framework::LoDTensor>();
      PADDLE_ENFORCE_EQ(
182 183
          var_t.dims(),
          dims,
T
tangwei12 已提交
184 185 186 187
          platform::errors::InvalidArgument("vars should have the same dims."));
    }

    // set output tensor to 0.
L
Leo Chen 已提交
188 189
    phi::CPUContext cpu_ctx;
    phi::funcs::SetConstant<phi::CPUContext, T> constant_functor;
T
tangwei12 已提交
190 191 192 193 194 195 196 197 198 199 200 201
    constant_functor(cpu_ctx, out_t, static_cast<T>(0));
    // sum all vars to out
    auto result = EigenVector<T>::Flatten(*out_t);
    for (auto &var : vars) {
      auto &in_t = var->Get<framework::LoDTensor>();
      auto in = EigenVector<T>::Flatten(in_t);
      result.device(*cpu_ctx.eigen_device()) = result + in;
    }
    if (!merge_add) {
      result.device(*cpu_ctx.eigen_device()) =
          result / static_cast<T>(vars.size());
    }
202 203 204
  } else if (var0->IsType<phi::SelectedRows>()) {
    auto &slr0 = var0->Get<phi::SelectedRows>();
    auto *out_slr = out_var->GetMutable<phi::SelectedRows>();
T
tangwei12 已提交
205 206
    out_slr->mutable_rows()->clear();
    out_slr->mutable_value()->mutable_data<T>({{}}, cpu_place);
207
    std::vector<const phi::SelectedRows *> inputs;
T
tangwei12 已提交
208 209
    inputs.reserve(vars.size());
    for (auto &var : vars) {
210
      inputs.push_back(&var->Get<phi::SelectedRows>());
T
tangwei12 已提交
211
    }
L
Leo Chen 已提交
212
    phi::CPUContext dev_ctx;
T
tangwei12 已提交
213
    if (merge_add) {
L
Leo Chen 已提交
214
      paddle::operators::math::scatter::MergeAdd<phi::CPUContext, T> merge_add;
T
tangwei12 已提交
215 216
      merge_add(dev_ctx, inputs, out_slr);
    } else {
L
Leo Chen 已提交
217 218
      paddle::operators::math::scatter::MergeAverage<phi::CPUContext, T>
          merge_average;
T
tangwei12 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
      merge_average(dev_ctx, inputs, out_slr);
    }

    VLOG(3) << "merge " << var_name << " SelectedRows height: " << slr0.height()
            << " dims: " << slr0.value().dims() << "; merge add: " << merge_add;
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument("unsupported var type: %s!",
                                                   var0->Type()));
  }
}

using RpcCtxMap = std::unordered_map<std::string, CommContext>;
using RecvCtxMap = std::unordered_map<uint64_t, std::vector<std::string>>;
using SparseValue = std::unordered_map<int64_t, std::vector<float>>;

class Communicator {
 public:
  Communicator();

  explicit Communicator(const std::map<std::string, std::string> &envs_) {
239
    VLOG(3) << "Communicator Init Envs";
T
tangwei12 已提交
240 241
    for (auto &iter : envs_) {
      envs[iter.first] = iter.second;
242
      VLOG(3) << iter.first << ": " << iter.second;
T
tangwei12 已提交
243 244 245 246 247 248 249 250
    }
    barrier_table_id_ = std::stoi(envs.at("barrier_table_id"));
    trainer_id_ = std::stoi(envs.at("trainer_id"));
    trainers_ = std::stoi(envs.at("trainers"));
  }

  virtual void InitBrpcClient(const std::string &dist_desc,
                              const std::vector<std::string> &host_sign_list);
Z
zhaocaibei123 已提交
251 252 253 254 255

  virtual std::vector<uint64_t> GetClientInfo();

  virtual int SetClients(std::vector<uint64_t> &host_sign_list);  // NOLINT

T
tangwei12 已提交
256 257
  // 1. recv dense param
  virtual void RpcRecvDense(const std::vector<std::string> &varnames,
258 259
                            int table_id,
                            Scope *scope);
T
tangwei12 已提交
260 261
  // 2. send dense param
  virtual void RpcSendDenseParam(const std::vector<std::string> &varnames,
262 263
                                 int table_id,
                                 const Scope &scope);
T
tangwei12 已提交
264 265 266
  // 3. send dense grad
  virtual void RpcSendDense(const CommContext &ctx, const Scope &scope);
  // 4. send sparse grad
267 268
  virtual void RpcSendSparse(const std::string &var_name,
                             int table_id,
T
tangwei12 已提交
269 270
                             const Scope &scope);
  // 5. send sparse param
271 272
  virtual void RpcSendSparseParam(const std::string &varname,
                                  int table_id,
T
tangwei12 已提交
273 274
                                  const Scope &scope);
  // 6. recv sparse param
275 276
  virtual void RpcRecvSparse(const std::string &varname,
                             int table_id,
T
tangwei12 已提交
277
                             Scope *scope);
278
  // 7. send gloabl step
279 280
  virtual void SendGlobalStep(const CommContext &ctx,
                              int batches,
281
                              Scope *send_scope);
T
tangwei12 已提交
282 283 284 285 286 287

  virtual ~Communicator() {}
  virtual void RpcProfilerControl();

  virtual void InitParams(const RecvCtxMap &recv_varname_to_ctx);

Z
zhaocaibei123 已提交
288
  // note: only for pull dense param first before training
289 290
  virtual void PullDense(const RecvCtxMap &recv_varname_to_ctx);

T
tangwei12 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
  virtual void Start() = 0;

  virtual void Stop() = 0;

  virtual bool IsRunning() { return running_; }

  virtual void Clean() {}

  virtual bool Check(const int table_id) = 0;
  virtual bool Check(const std::vector<std::string> &var_tables) = 0;

  virtual void Send(const std::vector<std::string> &var_names,
                    const framework::Scope &scope) = 0;

  virtual void RecvNoBarrier() {}

  virtual void Barrier() {}

  virtual void BarrierWithTable(uint32_t barrier_type) {
Z
zhaocaibei123 已提交
310
    auto rets = _worker_ptr->Barrier(barrier_table_id_, barrier_type);
T
tangwei12 已提交
311
    rets.wait();
312
    int status = rets.get();
313 314
    PADDLE_ENFORCE_EQ(status,
                      0,
315 316
                      platform::errors::InvalidArgument(
                          "The ret status must be 0 when barrier with table"));
T
tangwei12 已提交
317 318
  }

Z
zhaocaibei123 已提交
319 320 321
  virtual void CreateC2CConnection(int pserver_timeout_ms,
                                   int pserver_connect_timeout_ms,
                                   int max_retry) {
Z
zhaocaibei123 已提交
322
    _worker_ptr->CreateClient2ClientConnection(
Z
zhaocaibei123 已提交
323 324 325
        pserver_timeout_ms, pserver_connect_timeout_ms, max_retry);
  }

T
tangwei12 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
  virtual void BarrierTriggerDecrement() {}

  virtual void BarrierTriggerReset(int init_counter) {}

  virtual void InitEnvs() = 0;

  virtual void InitImpl(const RpcCtxMap &send_varname_to_ctx,
                        const RecvCtxMap &recv_varname_to_ctx,
                        Scope *recv_scope) {}

  static Communicator *GetInstance() { return communicator_.get(); }

  static std::shared_ptr<Communicator> GetInstantcePtr() {
    return communicator_;
  }

  template <typename T>
  static Communicator *InitInstance(
344 345
      const RpcCtxMap &send_ctx,
      const RecvCtxMap &recv_ctx,
T
tangwei12 已提交
346
      const std::string &dist_desc,
347 348
      const std::vector<std::string> &host_sign_list,
      Scope *recv_scope,
T
tangwei12 已提交
349
      const std::map<std::string, std::string> &envs) {
350 351 352 353 354 355 356
    std::call_once(init_flag_,
                   &Communicator::InitWithRpcCtx<T>,
                   send_ctx,
                   recv_ctx,
                   dist_desc,
                   host_sign_list,
                   recv_scope,
T
tangwei12 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
                   std::ref(envs));
    return communicator_.get();
  }

  // Init is called by InitInstance.
  template <typename T>
  static void InitWithRpcCtx(const RpcCtxMap &send_ctx,
                             const RecvCtxMap &recv_ctx,
                             const std::string &dist_desc,
                             const std::vector<std::string> &host_sign_list,
                             Scope *recv_scope,
                             const std::map<std::string, std::string> &envs) {
    if (communicator_.get() == nullptr) {
      communicator_.reset(new T(std::ref(envs)));
      communicator_->InitEnvs();
      communicator_->InitBrpcClient(dist_desc, host_sign_list);
      communicator_->InitImpl(send_ctx, recv_ctx, recv_scope);
    }
  }

  PSClient *GetPsClient() { return _worker_ptr.get(); }

379
  std::shared_ptr<paddle::distributed::PSClient> GetPsClientPtr() {
Z
zhaocaibei123 已提交
380
    return std::move(_worker_ptr);
T
tangwei12 已提交
381 382
  }

T
Thunderbrook 已提交
383 384
  RecvCtxMap &GetRecvCtxMap() { return recv_varname_to_ctx_; }

385
  std::shared_ptr<PSClient> _worker_ptr;  // pointer to worker
T
tangwei12 已提交
386 387 388 389 390 391 392 393 394 395 396 397

 protected:
  bool running_ = false;
  bool waiting_ = true;
  bool flushing_ = false;
  bool do_server_profiler_ = false;
  static std::shared_ptr<Communicator> communicator_;
  static std::once_flag init_flag_;

  std::unordered_map<std::string, std::string> envs;

  // 计算每个shard 对 dense的存储量
Z
zhaocaibei123 已提交
398 399
  inline uint32_t DenseDimPerShard(uint32_t dense_dim_total,
                                   uint32_t shard_num) {
T
tangwei12 已提交
400 401 402
    return dense_dim_total / shard_num + 1;
  }

Z
zhaocaibei123 已提交
403
  void InitGFlag(const std::string &gflags);
T
tangwei12 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
  paddle::distributed::PSParameter _ps_param;
  paddle::distributed::PaddlePSEnvironment _ps_env;
  int servers_ = 0;
  int trainers_;
  int trainer_id_ = 0;
  int barrier_table_id_ = 0;
  RpcCtxMap send_varname_to_ctx_;
  RecvCtxMap recv_varname_to_ctx_;

  Scope *recv_scope_;  // should be global scope
  std::unique_ptr<Scope> xpu_temp_scope_;
  std::atomic<uint32_t> _async_call_num{0};
};

class AsyncCommunicator : public Communicator {
 public:
  AsyncCommunicator() : Communicator() {}

  explicit AsyncCommunicator(const std::map<std::string, std::string> &envs)
      : Communicator(envs) {}

  ~AsyncCommunicator();

  void InitEnvs() {
    independent_recv_ = static_cast<bool>(
        std::stoi(envs.at("communicator_independent_recv_thread")));
    min_send_grad_num_before_recv_ =
        std::stoi(envs.at("communicator_min_send_grad_num_before_recv"));
    thread_pool_size_ = std::stoi(envs.at("communicator_thread_pool_size"));
    max_merge_var_num_ = std::stoi(envs.at("communicator_max_merge_var_num"));
    send_wait_times_ = std::stoi(envs.at("communicator_send_wait_times"));
    send_queue_size_ = std::stoi(envs.at("communicator_send_queue_size"));
    need_global_step_ =
        static_cast<bool>(std::stoi(envs.at("need_global_step")));
  }

  void Start() override;

  void Stop() override;

  void InitImpl(const RpcCtxMap &send_varname_to_ctx,
                const RecvCtxMap &recv_varname_to_ctx,
                Scope *recv_scope) override;

  virtual void MainThread();
  virtual void RecvThread();

  virtual bool Check(const int table_id);
  virtual bool Check(const std::vector<std::string> &var_tables);

  void Send(const std::vector<std::string> &var_names,
            const framework::Scope &scope) override;

  virtual void SendByCommunicator();

  virtual void RecvByCommunicator();

  virtual void RecvNoBarrier();

  virtual int BatchesCounter() { return 1; }

  virtual void BarrierSend() {}

  virtual void BarrierRecv() {}

  virtual void BarrierWeakUp() {}

Z
zhaocaibei123 已提交
471 472
  void PushDensePostProcessing();

Y
yaoxuefeng 已提交
473
  void PullSparseToTensorSync(
474 475 476 477 478
      const uint64_t table_id,
      int fea_dim,
      uint64_t padding_id,
      platform::Place place,
      bool is_training,
Y
yaoxuefeng 已提交
479 480 481 482
      std::vector<const framework::LoDTensor *> *inputs,  // NOLINT
      std::vector<framework::LoDTensor *> *outputs);      // NOLINT

  void PushSparseFromTensorAsync(
483 484 485 486 487 488 489
      const uint64_t table_id,
      int fea_dim,
      uint64_t padding_id,
      platform::Place place,
      std::vector<const framework::LoDTensor *> *inputs,
      const framework::LoDTensor *shows,
      const framework::LoDTensor *clicks,
Y
yaoxuefeng 已提交
490 491
      std::vector<framework::LoDTensor *> *outputs);

T
tangwei12 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505
 protected:
  std::unordered_map<std::string,
                     std::shared_ptr<BlockingQueue<std::shared_ptr<Variable>>>>
      send_varname_to_queue_;
  std::unique_ptr<::ThreadPool> send_threadpool_{nullptr};

  int min_send_grad_num_before_recv_;
  int thread_pool_size_;
  int max_merge_var_num_;
  int send_wait_times_;
  int send_queue_size_;
  bool need_global_step_ = false;
  bool independent_recv_ = true;
  int parallel_task_nums_ = 0;
Y
yaoxuefeng 已提交
506
  int32_t sleep_seconds_before_fail_exit_;
T
tangwei12 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532

  std::unique_ptr<std::thread> main_thread_{nullptr};
  std::unique_ptr<std::thread> recv_thread_{nullptr};

  std::unique_ptr<Scope> send_scope_;  // an independent scope
  std::atomic_uint grad_num_{0};  // the num of gradient sent since last recv
};

class HalfAsyncCommunicator : public AsyncCommunicator {
 public:
  HalfAsyncCommunicator() {}

  explicit HalfAsyncCommunicator(const std::map<std::string, std::string> &envs)
      : AsyncCommunicator(envs) {}

  void InitEnvs() {
    // enfore to recv after send
    independent_recv_ = false;
    min_send_grad_num_before_recv_ = 0;
    thread_pool_size_ = std::stoi(envs.at("communicator_thread_pool_size"));
    max_merge_var_num_ = std::stoi(envs.at("communicator_max_merge_var_num"));
    send_wait_times_ = std::stoi(envs.at("communicator_send_wait_times"));
    send_queue_size_ = std::stoi(envs.at("communicator_send_queue_size"));
    need_global_step_ =
        static_cast<bool>(std::stoi(envs.at("need_global_step")));

533
    VLOG(1) << "HalfAsyncCommunicator Initialized";
T
tangwei12 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
  }

  void MainThread() override;

  void SendByCommunicator() override;

  void Clean() override;

  void Barrier() override;

  void BarrierTriggerDecrement() override;

  void BarrierTriggerReset(int initial_val) override;

  int BatchesCounter();

  void BarrierWeakUp();

 protected:
  // mutex for Wait for barrier
  std::mutex barrier_mutex_;
  std::condition_variable barrier_cond_;
  std::atomic<int64_t> barrier_trigger_{0};
  std::atomic<int64_t> barrier_counter_{0};
};

class SyncCommunicator : public HalfAsyncCommunicator {
 public:
  SyncCommunicator() : HalfAsyncCommunicator() {}

  explicit SyncCommunicator(const std::map<std::string, std::string> &envs)
      : HalfAsyncCommunicator(envs) {}

  void InitEnvs() {
    // enfore to recv after send
    independent_recv_ = false;
    min_send_grad_num_before_recv_ = 0;
    max_merge_var_num_ = std::stoi(envs.at("communicator_max_merge_var_num"));
    send_wait_times_ = std::stoi(envs.at("communicator_send_wait_times"));
    thread_pool_size_ = std::stoi(envs.at("communicator_thread_pool_size"));
    send_queue_size_ = std::stoi(envs.at("communicator_send_queue_size"));
    need_global_step_ =
        static_cast<bool>(std::stoi(envs.at("need_global_step")));

578
    VLOG(1) << "SyncCommunicator Initialized";
T
tangwei12 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
  }

  void BarrierSend();

  void BarrierRecv();

 private:
  std::vector<std::string> pserver_endpoints_{};
};

class GeoCommunicator : public AsyncCommunicator {
 public:
  GeoCommunicator() : AsyncCommunicator() {}

  explicit GeoCommunicator(const std::map<std::string, std::string> &envs)
      : AsyncCommunicator(envs) {}

  void InitImpl(const RpcCtxMap &send_varname_to_ctx,
                const RecvCtxMap &recv_varname_to_ctx,
                Scope *recv_scope) override;

  void InitParams(const RecvCtxMap &recv_varname_to_ctx) override;
Z
zhaocaibei123 已提交
601
  void InitDense(std::vector<std::string> &varnames, int table_id);  // NOLINT
T
tangwei12 已提交
602 603 604 605 606 607
  void InitSparse(const std::string &var_name, int table_id);

  void SendDense(const CommContext &send_ctx);
  void RecvDense(const CommContext &send_ctx);

  std::vector<int64_t> MergeSparseIds(const std::string &varname);
Z
zhaocaibei123 已提交
608 609
  void SendSparse(const std::string &varname,
                  std::vector<int64_t> &sparse_ids,  // NOLINT
610 611
                  int table_id,
                  int ep_idx);
T
tangwei12 已提交
612 613 614 615 616 617 618 619 620 621 622 623
  void RecvSparse(const std::string &varname, int table_id, int ep_idx);

  void MainThread() override;

  void InitEnvs() {
    independent_recv_ = false;
    min_send_grad_num_before_recv_ = 0;
    send_wait_times_ = std::stoi(envs.at("communicator_send_wait_times"));
    thread_pool_size_ = std::stoi(envs.at("communicator_thread_pool_size"));
    // id_queue's size
    max_merge_var_num_ = std::stoi(envs.at("communicator_max_merge_var_num"));
    send_queue_size_ = max_merge_var_num_;
624
    VLOG(1) << "GeoCommunicator Initialized";
T
tangwei12 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
  }

  void Send(const std::vector<std::string> &var_names,
            const framework::Scope &scope) override;

  void SendByCommunicator() { return; }

  void RecvByCommunicator() override { return; }

  inline std::string GradToParam(const std::string var_name) {
    std::string param_name = var_name.substr(0, var_name.size() - 5);
    return param_name;
  }

  inline std::string SplitedGradToParam(const std::string delta_name) {
    // delta_name: emb.delta0
    auto pos = delta_name.find(".block");
    std::string param_name = delta_name.substr(0, pos);
    return param_name;
  }

 private:
  // parameter for delta calc and send
  std::shared_ptr<Scope> delta_scope_;
  // parameter for storage the pserver param after last recv
  std::shared_ptr<Scope> old_scope_;
  // parameter on pserver
  std::shared_ptr<Scope> pserver_scope_;

654 655 656
  std::unordered_map<
      std::string,
      paddle::framework::Channel<std::shared_ptr<std::vector<int64_t>>>>
T
tangwei12 已提交
657 658 659 660 661
      sparse_id_queues_;
};

}  // namespace distributed
}  // namespace paddle