reduce_op_handle_test.cc 8.2 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "gtest/gtest.h"

#include "paddle/fluid/platform/device_context.h"

namespace paddle {
namespace framework {
namespace details {
namespace f = paddle::framework;
namespace p = paddle::platform;

// test data amount
const f::DDim kDims = {20, 20};

struct TestReduceOpHandle {
  bool use_gpu_;
  Scope g_scope_;
  std::vector<Scope *> local_scopes_;
  std::unique_ptr<OpHandleBase> op_handle_;
  std::vector<std::unique_ptr<VarHandleBase>> vars_;
  std::vector<p::Place> gpu_list_;
  std::vector<std::unique_ptr<p::DeviceContext>> ctxs_;

#ifdef PADDLE_WITH_CUDA
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
#endif

  void WaitAll() {
    for (size_t j = 0; j < ctxs_.size(); ++j) {
      ctxs_[j]->Wait();
    }
#ifdef PADDLE_WITH_CUDA
    nccl_ctxs_->WaitAll();
#endif
  }

  void InitCtxOnGpu(bool use_gpu) {
    use_gpu_ = use_gpu;
    if (use_gpu) {
#ifdef PADDLE_WITH_CUDA
      int count = p::GetCUDADeviceCount();
      if (count <= 1) {
        LOG(WARNING) << "Cannot test multi-gpu Broadcast, because the CUDA "
                        "device count is "
                     << count;
        exit(0);
      }
      for (int i = 0; i < count; ++i) {
        auto p = p::CUDAPlace(i);
        gpu_list_.push_back(p);
        ctxs_.emplace_back(new p::CUDADeviceContext(p));
      }
#else
      PADDLE_THROW("CUDA is not support.");
#endif
    } else {
      int count = 8;
      for (int i = 0; i < count; ++i) {
        auto p = p::CPUPlace();
        gpu_list_.push_back(p);
        ctxs_.emplace_back(new p::CPUDeviceContext(p));
      }
    }
#ifdef PADDLE_WITH_CUDA
    nccl_ctxs_.reset(new platform::NCCLContextMap(gpu_list_));
#endif
  }

  void InitReduceOp(size_t input_scope_idx) {
    for (size_t j = 0; j < gpu_list_.size(); ++j) {
      local_scopes_.push_back(&(g_scope_.NewScope()));
      local_scopes_[j]->Var("out");
    }
    local_scopes_[input_scope_idx]->Var("input");

#ifdef PADDLE_WITH_CUDA
    op_handle_.reset(new ReduceOpHandle(local_scopes_, gpu_list_, *nccl_ctxs_));
#else
    op_handle_.reset(new ReduceOpHandle(local_scopes_, gpu_list_));
#endif

    // add input
    for (size_t j = 0; j < gpu_list_.size(); ++j) {
      op_handle_->dev_ctxes_[gpu_list_[j]] = ctxs_[j].get();
      vars_.emplace_back(new VarHandle());
      VarHandle *in_var_handle = static_cast<VarHandle *>(vars_.back().get());
      in_var_handle->place_ = gpu_list_[j];
      in_var_handle->name_ = "input";
      in_var_handle->version_ = 1;
      in_var_handle->scope_idx_ = j;
      in_var_handle->generated_op_ = nullptr;
      op_handle_->AddInput(in_var_handle);
    }

    // add dummy var
    vars_.emplace_back(new DummyVarHandle());
    DummyVarHandle *in_dummy_var_handle =
        static_cast<DummyVarHandle *>(vars_.back().get());
    in_dummy_var_handle->generated_op_ = nullptr;
    op_handle_->AddInput(in_dummy_var_handle);

    // add output
    vars_.emplace_back(new VarHandle());
    VarHandle *out_var_handle = static_cast<VarHandle *>(vars_.back().get());
    out_var_handle->place_ = gpu_list_[input_scope_idx];
    out_var_handle->name_ = "out";
    out_var_handle->version_ = 2;
    out_var_handle->scope_idx_ = input_scope_idx;
    op_handle_->AddOutput(out_var_handle);

    // add dummy var
    vars_.emplace_back(new DummyVarHandle());
    DummyVarHandle *dummy_var_handle =
        static_cast<DummyVarHandle *>(vars_.back().get());
    op_handle_->AddOutput(dummy_var_handle);
  }

  void TestReduceSelectedRows(size_t output_scope_idx) {
    int height = kDims[0] * 2;
    std::vector<int64_t> rows{0, 1, 2, 3, 3, 0, 14, 7, 3, 1,
                              2, 4, 6, 3, 1, 1, 1,  1, 3, 7};
    std::vector<float> send_vector(f::product(kDims));
    for (size_t k = 0; k < send_vector.size(); ++k) {
      send_vector[k] = k;
    }

    for (size_t input_scope_idx = 0; input_scope_idx < gpu_list_.size();
         ++input_scope_idx) {
      auto in_var = local_scopes_[input_scope_idx]->Var("input");
      auto in_selected_rows = in_var->GetMutable<f::SelectedRows>();
      auto value = in_selected_rows->mutable_value();
      value->mutable_data<float>(kDims, gpu_list_[input_scope_idx]);

      in_selected_rows->set_height(height);
      in_selected_rows->set_rows(rows);

      paddle::framework::TensorFromVector<float>(
          send_vector, *(ctxs_[input_scope_idx]), value);
      value->Resize(kDims);
    }

    auto out_var = local_scopes_[output_scope_idx]->Var("out");
    auto out_selected_rows = out_var->GetMutable<f::SelectedRows>();

    auto in_var = local_scopes_[output_scope_idx]->Var("input");
    auto in_selected_rows = in_var->GetMutable<f::SelectedRows>();

    out_selected_rows->mutable_value()->ShareDataWith(
        in_selected_rows->value());

    op_handle_->Run(false);

    WaitAll();

    p::CPUPlace cpu_place;

    auto &out_select_rows = out_var->Get<f::SelectedRows>();
    auto rt = out_select_rows.value();

    PADDLE_ENFORCE_EQ(out_select_rows.height(), height, "height is not equal.");
    for (size_t k = 0; k < out_select_rows.rows().size(); ++k) {
      PADDLE_ENFORCE_EQ(out_select_rows.rows()[k], rows[k % rows.size()]);
    }

    f::Tensor result_tensor;
    f::TensorCopy(rt, cpu_place, *(ctxs_[output_scope_idx]), &result_tensor);
    float *ct = result_tensor.data<float>();

    for (int64_t j = 0; j < f::product(result_tensor.dims()); ++j) {
      ASSERT_NEAR(ct[j], send_vector[j % send_vector.size()], 1e-5);
    }
  }

  void TestReduceLodTensors(size_t output_scope_idx) {
    std::vector<float> send_vector(static_cast<size_t>(f::product(kDims)));
    for (size_t k = 0; k < send_vector.size(); ++k) {
      send_vector[k] = k;
    }
    f::LoD lod{{0, 10, 20}};

    for (size_t input_scope_idx = 0; input_scope_idx < gpu_list_.size();
         ++input_scope_idx) {
      auto in_var = local_scopes_[input_scope_idx]->Var("input");
      auto in_lod_tensor = in_var->GetMutable<f::LoDTensor>();
      in_lod_tensor->mutable_data<float>(kDims, gpu_list_[input_scope_idx]);
      in_lod_tensor->set_lod(lod);

      paddle::framework::TensorFromVector<float>(
          send_vector, *(ctxs_[input_scope_idx]), in_lod_tensor);
    }

    auto out_var = local_scopes_[output_scope_idx]->Var("out");
    auto out_lodtensor = out_var->GetMutable<f::LoDTensor>();

    auto in_var = local_scopes_[output_scope_idx]->Var("input");
    auto in_lodtensor = in_var->Get<f::LoDTensor>();

    out_lodtensor->ShareDataWith(in_lodtensor);

    op_handle_->Run(false);

    WaitAll();

    p::CPUPlace cpu_place;

    auto &rt = out_var->Get<f::LoDTensor>();

    f::Tensor result_tensor;
    f::TensorCopy(rt, cpu_place, *(ctxs_[output_scope_idx]), &result_tensor);
    float *ct = result_tensor.data<float>();

    for (int64_t j = 0; j < f::product(result_tensor.dims()); ++j) {
      ASSERT_NEAR(ct[j], send_vector[j] * gpu_list_.size(), 1e-5);
    }
  }
};

TEST(ReduceTester, TestCPUReduceTestSelectedRows) {
  TestReduceOpHandle test_op;
  size_t input_scope_idx = 0;
  test_op.InitCtxOnGpu(false);
  test_op.InitReduceOp(input_scope_idx);
  test_op.TestReduceSelectedRows(input_scope_idx);
}

// #ifdef PADDLE_WITH_CUDA
//
// TEST(ReduceTester, TestGPUReduceTestSelectedRows) {
//  TestReduceOpHandle test_op;
//  size_t input_scope_idx = 0;
//  test_op.InitCtxOnGpu(true);
//  test_op.InitReduceOp(input_scope_idx);
//  test_op.TestReduceSelectedRows(input_scope_idx);
// }
//
// TEST(ReduceTester, TestCPUReduceTestLodTensor) {
//  TestReduceOpHandle test_op;
//  size_t input_scope_idx = 0;
//  test_op.InitCtxOnGpu(true);
//  test_op.InitReduceOp(input_scope_idx);
//  test_op.TestReduceLodTensors(input_scope_idx);
// }
// #endif

}  // namespace details
}  // namespace framework
}  // namespace paddle