tracer.cc 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/tracer.h"

namespace paddle {
M
minqiyang 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
namespace imperative {

void CreateGradOp(const framework::OpDesc& op_desc,
                  const std::unordered_set<std::string>& no_grad_set,
                  const std::vector<framework::BlockDesc*>& grad_sub_block,
                  framework::OpDesc** grad_op_desc,
                  std::unordered_map<std::string, std::string>* grad_to_var) {
  std::vector<std::unique_ptr<framework::OpDesc>> grad_op_descs =
      framework::OpInfoMap::Instance()
          .Get(op_desc.Type())
          .GradOpMaker()(op_desc, no_grad_set, grad_to_var, grad_sub_block);
  PADDLE_ENFORCE(grad_op_descs.size() == 1, "Only support 1 grad op now.");
  // TODO(panyx0718): Leak?
  *grad_op_desc = grad_op_descs[0].release();
}

void InitVar(framework::Variable* var, framework::Variable* grad_var) {
  auto& var_t = var->Get<framework::LoDTensor>();
  float* data =
      grad_var->GetMutable<framework::LoDTensor>()->mutable_data<float>(
          var_t.dims(), platform::CPUPlace());
  std::fill(data, data + var_t.numel(), 0.0);
}

void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
                   const VarBasePtrMap& outputs, framework::BlockDesc* block,
                   const bool stop_gradient) {
  std::map<std::string, VarBase*> vars;

  framework::OpDesc* op_desc = op->op_desc_;
  VLOG(3) << "tracer tracing " << op_desc->Type();
  op_desc->InferShape(*block);
  op_desc->InferVarType(block);
  std::unique_ptr<framework::OperatorBase> op_base =
      framework::OpRegistry::CreateOp(*op_desc);

  framework::VariableValueMap invars_map;
  framework::VariableValueMap outvars_map;

  op->input_vars_ = inputs;
  for (auto it : op->input_vars_) {
    auto& invars = invars_map[it.first];
    for (VarBase* inp : it.second) {
M
minqiyang 已提交
61
      PADDLE_ENFORCE_NOT_NULL(inp->var_, "op %s input %s nullptr",
M
minqiyang 已提交
62 63
                              op->op_desc_->Type(), inp->var_desc_->Name());

M
minqiyang 已提交
64
      invars.push_back(inp->var_);
M
minqiyang 已提交
65
      vars[inp->var_desc_->Name()] = inp;
X
Xin Pan 已提交
66 67 68
      if (inp->PreOp()) {
        op->pre_ops_[it.first].push_back(inp->PreOp());
        op->pre_ops_out_idx_[it.first].push_back(inp->PreOpOutIdx());
M
minqiyang 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82
      } else {
        op->pre_ops_[it.first].push_back(nullptr);
      }
      VLOG(3) << "input vname " << inp->var_desc_->Name() << " "
              << inp->var_->IsInitialized();
    }
  }

  op->output_vars_ = outputs;
  for (auto it : op->output_vars_) {
    auto& outvars = outvars_map[it.first];
    const std::vector<VarBase*>& outputs = it.second;
    for (size_t i = 0; i < outputs.size(); ++i) {
      VarBase* out = outputs[i];
M
minqiyang 已提交
83
      outvars.push_back(out->var_);
M
minqiyang 已提交
84 85 86 87 88 89 90 91
      vars[out->var_desc_->Name()] = out;

      framework::VarDesc* var_desc = block->FindVar(out->var_desc_->Name());
      if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) {
        out->var_->GetMutable<framework::LoDTensor>();
      } else {
        LOG(ERROR) << "tracer doesn't support yet";
      }
X
Xin Pan 已提交
92
      out->TrackPreOp(op, it.first, i, stop_gradient);
M
minqiyang 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

      VLOG(3) << "output vname " << out->var_desc_->Name() << " "
              << out->var_->IsInitialized();
    }
  }

  VLOG(3) << "tracer running " << op_desc->Type();
  framework::RuntimeContext ctx(invars_map, outvars_map);

  // TODO(panyx0718): Cache p.
  framework::OperatorWithKernel* op_kernel =
      dynamic_cast<framework::OperatorWithKernel*>(op_base.get());
  PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");

  framework::Scope scope;
  platform::CPUPlace place;
  PreparedOp p = PreparedOp::Prepare(ctx, *op_kernel, place);
  p.op.RuntimeInferShape(scope, place, ctx);
  p.func(framework::ExecutionContext(p.op, scope, *p.dev_ctx, p.ctx));

  if (!stop_gradient) {
    framework::OpDesc* grad_op_desc;
115 116 117 118
    // TODO(panyx): Is this leaked?
    std::unique_ptr<std::unordered_map<std::string, std::string>> grad_to_var(
        new std::unordered_map<std::string, std::string>());
    CreateGradOp(*op_desc, {}, {block}, &grad_op_desc, grad_to_var.get());
M
minqiyang 已提交
119 120 121 122 123 124 125 126 127 128
    op->grad_op_desc_ = grad_op_desc;

    for (auto it : grad_op_desc->Inputs()) {
      auto& grad_in_vars = op->grad_input_vars_[it.first];
      for (const std::string& grad_invar : it.second) {
        block->FindRecursiveOrCreateVar(grad_invar);
        auto var_it = grad_to_var->find(grad_invar);
        if (var_it == grad_to_var->end()) {
          auto fwd_var_it = vars.find(grad_invar);
          PADDLE_ENFORCE(fwd_var_it != vars.end());
129
          // Forward inputs or outputs.
M
minqiyang 已提交
130
          grad_in_vars.push_back(fwd_var_it->second->var_);
M
minqiyang 已提交
131 132
        } else {
          VarBase* var = vars[var_it->second];
M
minqiyang 已提交
133 134
          if (!var->grads_->var_->IsInitialized()) {
            InitVar(var->var_, var->grads_->var_);
M
minqiyang 已提交
135
          }
136
          // Douts.
M
minqiyang 已提交
137
          grad_in_vars.push_back(var->grads_->var_);
M
minqiyang 已提交
138 139 140 141 142 143 144 145 146 147 148
        }
      }
    }

    for (auto it : grad_op_desc->Outputs()) {
      auto& grad_out_vars = op->grad_output_vars_[it.first];
      for (const std::string& grad_outvar : it.second) {
        block->FindRecursiveOrCreateVar(grad_outvar);
        auto var_it = grad_to_var->find(grad_outvar);
        PADDLE_ENFORCE(var_it != grad_to_var->end());
        VarBase* var = vars[var_it->second];
M
minqiyang 已提交
149 150
        if (!var->grads_->var_->IsInitialized()) {
          InitVar(var->var_, var->grads_->var_);
M
minqiyang 已提交
151
        }
M
minqiyang 已提交
152
        grad_out_vars.push_back(var->grads_->var_);
M
minqiyang 已提交
153 154 155 156 157 158 159
      }
    }
  }

  op->block_ = block;
}

160 161 162 163
std::vector<VarBase*> Tracer::PyTrace(OpBase* op,
                                      const std::vector<VarBase*>& inputs,
                                      bool stop_gradient) {
  VLOG(3) << "py_trace";
X
Xin Pan 已提交
164 165
  op->input_vars_[PyLayer::kFwdInp] = inputs;
  op->output_vars_[PyLayer::kFwdOut] = PyLayer::Apply(op->forward_id_, inputs);
166
  for (VarBase* inp : inputs) {
X
Xin Pan 已提交
167 168 169
    if (inp->PreOp()) {
      op->pre_ops_[PyLayer::kFwdInp].push_back(inp->PreOp());
      op->pre_ops_out_idx_[PyLayer::kFwdInp].push_back(inp->PreOpOutIdx());
170
    } else {
X
Xin Pan 已提交
171
      op->pre_ops_[PyLayer::kFwdInp].push_back(nullptr);
172 173 174
    }
  }

X
Xin Pan 已提交
175
  auto& outputs = op->output_vars_[PyLayer::kFwdOut];
176 177
  for (size_t i = 0; i < outputs.size(); ++i) {
    VarBase* out = outputs[i];
X
Xin Pan 已提交
178
    out->TrackPreOp(op, PyLayer::kFwdOut, i, stop_gradient);
179 180
  }
  if (!stop_gradient) {
X
Xin Pan 已提交
181 182 183 184
    auto& grad_input_vars =
        op->grad_input_vars_[framework::GradVarName(PyLayer::kFwdInp)];
    auto& grad_output_vars =
        op->grad_output_vars_[framework::GradVarName(PyLayer::kFwdOut)];
185 186 187 188 189 190 191 192

    for (const VarBase* inp : inputs) {
      grad_input_vars.push_back(inp->var_);
    }
    for (VarBase* out : outputs) {
      grad_input_vars.push_back(out->var_);
    }
    for (VarBase* out : outputs) {
M
minqiyang 已提交
193
      grad_input_vars.push_back(out->grads_->var_);
194 195 196 197 198
      if (!grad_input_vars.back()->IsInitialized()) {
        InitVar(out->var_, grad_input_vars.back());
      }
    }
    for (const VarBase* inp : inputs) {
M
minqiyang 已提交
199
      grad_output_vars.push_back(inp->grads_->var_);
200 201 202 203 204 205 206 207
      if (!grad_output_vars.back()->IsInitialized()) {
        InitVar(inp->var_, grad_output_vars.back());
      }
    }
  }
  return outputs;
}

M
minqiyang 已提交
208
}  // namespace imperative
209
}  // namespace paddle