layer_function_generator.py 11.2 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
D
dzhwinter 已提交
16 17
import re
import functools
18
import warnings
Y
yuyang18 已提交
19
import string
D
dzhwinter 已提交
20

21
from six.moves import cStringIO
22
from ..proto import framework_pb2
W
Wu Yi 已提交
23
from ..framework import OpProtoHolder, Variable, core, convert_np_dtype_to_dtype_
24
from ..layer_helper import LayerHelper
D
dzhwinter 已提交
25

26
__all__ = [
27
    'deprecated', 'generate_layer_fn', 'generate_activation_fn', 'autodoc',
28 29
    'templatedoc'
]
D
dzhwinter 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47


def _convert_(name):
    """
    Formatting.

    Args:
       name: The name/alias

    This function takes in a name and converts it to a standard format of
    group1_group2. Where as per the regular expression, group1 can have
    alphabets and numbers and group2 has capital alphabets.

    """
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


Y
yuyang18 已提交
48 49 50 51
def _type_to_str_(tp):
    return framework_pb2.AttrType.Name(tp)


52 53 54 55 56
_two_dollar_pattern_ = re.compile(r"\$\$([^\$]+)\$\$")
_single_dollar_pattern_ = re.compile(r"\$([^\$]+)\$")
_two_bang_pattern_ = re.compile(r"!!([^!]+)!!")


Y
yuyang18 已提交
57 58 59 60 61 62 63
def escape_math(text):
    return _two_bang_pattern_.sub(
        r'$$\1$$',
        _single_dollar_pattern_.sub(r':math:`\1`',
                                    _two_dollar_pattern_.sub(r"!!\1!!", text)))


S
sneaxiy 已提交
64
def _generate_doc_string_(op_proto, additional_args_lines=None):
D
dzhwinter 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77
    """
    Generate docstring by OpProto

    Args:
        op_proto (framework_pb2.OpProto): a protobuf message typed OpProto

    Returns:
        str: the document string
    """

    if not isinstance(op_proto, framework_pb2.OpProto):
        raise TypeError("OpProto should be `framework_pb2.OpProto`")

78
    buf = cStringIO()
79
    buf.write(escape_math(op_proto.comment))
D
dzhwinter 已提交
80 81 82 83
    buf.write('\nArgs:\n')
    for each_input in op_proto.inputs:
        line_begin = '    {0}: '.format(_convert_(each_input.name))
        buf.write(line_begin)
84 85 86 87 88
        buf.write(escape_math(each_input.comment))
        if each_input.duplicable:
            buf.write("  Duplicatable.")
        if each_input.dispensable:
            buf.write("  Optional.")
D
dzhwinter 已提交
89 90
        buf.write('\n')

91
    skip_attrs = OpProtoHolder.generated_op_attr_names()
92 93 94
    # attr use_mkldnn and is_test also should not be visible to users.
    skip_attrs.add("use_mkldnn")
    skip_attrs.add("is_test")
95
    skip_attrs.add("use_cudnn")
D
dzhwinter 已提交
96
    for each_attr in op_proto.attrs:
97 98
        if each_attr.name in skip_attrs:
            continue
D
dzhwinter 已提交
99 100 101 102 103
        buf.write('    ')
        buf.write(each_attr.name)
        buf.write(' (')
        buf.write(_type_to_str_(each_attr.type))
        buf.write('): ')
104
        buf.write(escape_math(each_attr.comment))
D
dzhwinter 已提交
105 106
        buf.write('\n')

S
sneaxiy 已提交
107 108 109 110 111 112 113
    if additional_args_lines is not None:
        for line in additional_args_lines:
            line = line.strip()
            buf.write('    ')
            buf.write(line)
            buf.write('\n')

D
dzhwinter 已提交
114 115 116 117 118 119
    if len(op_proto.outputs) != 0:
        buf.write('\nReturns:\n')
        buf.write('    ')
        for each_opt in op_proto.outputs:
            if not each_opt.intermediate:
                break
120
        buf.write(escape_math(each_opt.comment))
D
dzhwinter 已提交
121 122 123 124

    return buf.getvalue()


125
def generate_layer_fn(op_type):
126
    """Register the Python layer for an Operator.
D
dzhwinter 已提交
127 128

    Args:
129
       op_type: The name of the operator to be created.
D
dzhwinter 已提交
130 131 132 133 134 135 136

    This function takes in the operator type (sigmoid, mean , average etc) and
    creates the operator functionality.

    """
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
    not_intermediate_outputs = \
137
        [output for output in op_proto.outputs if not output.intermediate]
D
dzhwinter 已提交
138
    intermediate_outputs = \
139
        [output for output in op_proto.outputs if output.intermediate]
D
dzhwinter 已提交
140 141 142

    if len(not_intermediate_outputs) != 1:
        raise ValueError("Only one non intermediate output operator can be",
Y
yuyang18 已提交
143
                         "automatically generated. {0}".format(op_type))
D
dzhwinter 已提交
144 145 146

    if not_intermediate_outputs[0].duplicable:
        raise ValueError(
147
            "Only non duplicable op can be automatically generated.")
D
dzhwinter 已提交
148 149 150 151

    for output in intermediate_outputs:
        if output.duplicable:
            raise ValueError("The op can be automatically generated only when ",
152
                             "all intermediate ops are not duplicable.")
D
dzhwinter 已提交
153 154 155 156

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]

Y
Yu Yang 已提交
157
    def infer_and_check_dtype(op_proto, *args, **kwargs):
D
dzhwinter 已提交
158 159 160 161 162 163 164 165 166 167
        """
        This function performs the sanity check for dtype and
        instance type.
        """
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
168 169 170 171
            if len(val) == 0:
                val = [args[0]]
                args = args[1:]

D
dzhwinter 已提交
172 173 174 175 176 177 178 179 180 181 182 183
            for each in val:
                if not isinstance(each, Variable):
                    raise ValueError("input of {0} must be variable".format(
                        op_type))

                if dtype is None:
                    dtype = each.dtype
                elif dtype != each.dtype:
                    raise ValueError(
                        "operator {0} must input same dtype. {1} vs {2}".format(
                            op_type, dtype, each.dtype))

W
Wu Yi 已提交
184 185 186 187 188 189 190 191 192
        if dtype is None:
            arg_dtype = kwargs.get("dtype")
            if arg_dtype:
                if not isinstance(arg_dtype, core.VarDesc.VarType):
                    dtype = convert_np_dtype_to_dtype_(arg_dtype)
                else:
                    dtype = arg_dtype
            else:
                dtype = core.VarDesc.VarType.FP32
D
dzhwinter 已提交
193 194
        return dtype

Y
Yu Yang 已提交
195
    def func(*args, **kwargs):
D
dzhwinter 已提交
196 197
        helper = LayerHelper(op_type, **kwargs)

Y
Yu Yang 已提交
198
        dtype = infer_and_check_dtype(op_proto, *args, **kwargs)
D
dzhwinter 已提交
199 200 201 202 203 204 205

        inputs = dict()
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
206 207 208
            if len(val) == 0 and len(args) != 0:
                val = args[0]
                args = args[1:]
D
dzhwinter 已提交
209 210 211
            inputs[ipt.name] = val

        outputs = dict()
212 213 214 215 216
        out = kwargs.pop(_convert_(o_name), [])
        if out:
            out_var = out[0] if (isinstance(out, list) or
                                 isinstance(out, tuple)) else out
        else:
X
Xin Pan 已提交
217
            out_var = helper.create_variable_for_type_inference(dtype=dtype)
218
        outputs[o_name] = [out_var]
D
dzhwinter 已提交
219
        for name in intermediate_output_names:
X
Xin Pan 已提交
220 221 222
            outputs[name] = [
                helper.create_variable_for_type_inference(dtype=dtype)
            ]
D
dzhwinter 已提交
223 224
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs)
225
        return helper.append_activation(out_var)
D
dzhwinter 已提交
226 227 228 229 230 231

    func.__name__ = op_type
    func.__doc__ = _generate_doc_string_(op_proto)
    return func


232
def generate_activation_fn(op_type):
233 234 235 236 237 238 239 240 241 242 243
    """Register the Python layer for an Operator without Attribute.

    Args:
       op_type: The name of the operator to be created.

    This function takes in the operator type (sigmoid, exp , tanh etc) and
    creates the operator functionality.

    """
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)

T
tensor-tang 已提交
244
    def func(x, name=None):
245
        helper = LayerHelper(op_type, **locals())
X
Xin Pan 已提交
246
        output = helper.create_variable_for_type_inference(dtype=x.dtype)
T
tensor-tang 已提交
247
        helper.append_op(type=op_type, inputs={"X": x}, outputs={"Out": output})
248 249 250 251
        return output

    func.__name__ = op_type
    func.__doc__ = _generate_doc_string_(op_proto)
252 253 254
    func.__doc__ = func.__doc__ + """
Examples:
    .. code-block:: python
255

256
        import paddle.fluid as fluid
257 258 259
        data = fluid.layers.data(name="input", shape=[32, 784])
        result = fluid.layers.%s(data)
""" % op_type
260 261 262
    return func


D
dzhwinter 已提交
263 264 265 266 267 268 269 270 271 272 273
def deprecated(func_or_class):
    """
    Deprecated warning decorator. It will result a warning message.
    Should be used before class or function, member function
    """

    @functools.wraps(func)
    def func_wrapper(*args, **kwargs):
        """
        Wrap func with deprecated warning
        """
Y
Yang Yu 已提交
274
        warnings.simplefilter('always', DeprecationWarning)  # turn off filter
D
dzhwinter 已提交
275 276 277 278
        warnings.warn(
            "Call to deprecated function {}.".format(func.__name__),
            category=DeprecationWarning,
            stacklevel=2)
Y
Yang Yu 已提交
279
        warnings.simplefilter('default', DeprecationWarning)  # reset filter
D
dzhwinter 已提交
280 281 282
        return func(*args, **kwargs)

    return func_wrapper
Y
Yang Yu 已提交
283 284


285 286 287 288 289 290 291
def autodoc(comment=""):
    def __impl__(func):
        func.__doc__ = _generate_doc_string_(OpProtoHolder.instance(
        ).get_op_proto(func.__name__)) + comment
        return func

    return __impl__
Y
yuyang18 已提交
292 293


Y
yuyang18 已提交
294
def templatedoc(op_type=None):
Y
yuyang18 已提交
295 296 297 298 299 300 301 302 303 304
    """
    Decorator of layer function. It will use the docstring from the layer
    function as the template. The template arguments are:

    * ${comment}: The operator comment written in CPP.
    * ${{name}_comment}: The comment of ${name} written with AddAttr, AddOutput,
        and AddInput. The ${name} is Python snake style. i.e., xxx_xxx.
    * ${{name}_type}: The type of ${name}.

    Returns:
Y
yuyang18 已提交
305
        Decorated function.
Y
yuyang18 已提交
306 307
    """

Y
yuyang18 已提交
308 309 310
    def trim_ending_dot(msg):
        return msg.rstrip('.')

Y
yuyang18 已提交
311
    def __impl__(func):
Y
yuyang18 已提交
312 313 314 315 316
        if op_type is None:
            op_type_name = func.__name__
        else:
            op_type_name = op_type
        op_proto = OpProtoHolder.instance().get_op_proto(op_type_name)
Y
yuyang18 已提交
317
        tmpl = string.Template(func.__doc__)
Y
yuyang18 已提交
318 319 320 321

        comment_lines = op_proto.comment.split("\n")
        comment = ""
        for line in comment_lines:
Y
yuyang18 已提交
322 323
            line = line.strip()
            if len(line) != 0:
Y
yuyang18 已提交
324
                comment += escape_math(line)
Y
yuyang18 已提交
325
                comment += " "
Y
yuyang18 已提交
326 327
            elif len(comment) != 0:
                comment += "\n    \n    "
Y
yuyang18 已提交
328

Y
yuyang18 已提交
329
        args = {"comment": trim_ending_dot(comment)}
Y
yuyang18 已提交
330 331
        for each_input in op_proto.inputs:
            input_name = _convert_(each_input.name)
Y
yuyang18 已提交
332 333
            args["{0}_comment".format(input_name)] = trim_ending_dot(
                each_input.comment)
Y
yuyang18 已提交
334 335 336
            args["{0}_type".format(input_name)] = "Variable"
        for each_attr in op_proto.attrs:
            input_name = _convert_(each_attr.name)
Y
yuyang18 已提交
337 338
            args["{0}_comment".format(input_name)] = trim_ending_dot(
                each_attr.comment)
Y
yuyang18 已提交
339 340 341 342
            args["{0}_type".format(input_name)] = _type_to_str_(each_attr.type)

        for each_opt in op_proto.outputs:
            output_name = _convert_(each_opt.name)
Y
yuyang18 已提交
343 344
            args["{0}_comment".format(output_name)] = trim_ending_dot(
                each_opt.comment)
Y
yuyang18 已提交
345 346 347 348 349
            args["{0}_type".format(output_name)] = "Variable"
        func.__doc__ = tmpl.substitute(args)
        return func

    return __impl__