test_dist_fleet_ps2.py 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import unittest
import tempfile
import shutil

22
import paddle
23
import paddle.fluid as fluid
24
import paddle.distributed.fleet.base.role_maker as role_maker
25
import paddle.distributed.fleet as fleet
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

# For Net
base_lr = 0.2
emb_lr = base_lr * 3
dict_dim = 1500
emb_dim = 128
hid_dim = 128
margin = 0.1
sample_rate = 1
batch_size = 4


class TestPSPassWithBow(unittest.TestCase):
    def net(self):
        def get_acc(cos_q_nt, cos_q_pt, batch_size):
            cond = fluid.layers.less_than(cos_q_nt, cos_q_pt)
            cond = fluid.layers.cast(cond, dtype='float64')
            cond_3 = fluid.layers.reduce_sum(cond)
            acc = fluid.layers.elementwise_div(
                cond_3,
                fluid.layers.fill_constant(
                    shape=[1], value=batch_size * 1.0, dtype='float64'),
                name="simnet_acc")
            return acc

        def get_loss(cos_q_pt, cos_q_nt):
            loss_op1 = fluid.layers.elementwise_sub(
                fluid.layers.fill_constant_batch_size_like(
                    input=cos_q_pt,
                    shape=[-1, 1],
                    value=margin,
                    dtype='float32'),
                cos_q_pt)
            loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt)
            loss_op3 = fluid.layers.elementwise_max(
                fluid.layers.fill_constant_batch_size_like(
                    input=loss_op2, shape=[-1, 1], value=0.0, dtype='float32'),
                loss_op2)
            avg_cost = fluid.layers.mean(loss_op3)
            return avg_cost

        is_distributed = False
        is_sparse = True

        # query
        q = fluid.layers.data(
            name="query_ids", shape=[1], dtype="int64", lod_level=1)
        # embedding
        q_emb = fluid.contrib.layers.sparse_embedding(
            input=q,
            size=[dict_dim, emb_dim],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__",
                learning_rate=emb_lr))
        q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim])
        # vsum
        q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum')
        q_ss = fluid.layers.softsign(q_sum)
        # fc layer after conv
        q_fc = fluid.layers.fc(
            input=q_ss,
            size=hid_dim,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__q_fc__",
                learning_rate=base_lr))
        # label data
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        # pt
        pt = fluid.layers.data(
            name="pos_title_ids", shape=[1], dtype="int64", lod_level=1)
        # embedding
        pt_emb = fluid.contrib.layers.sparse_embedding(
            input=pt,
            size=[dict_dim, emb_dim],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__",
                learning_rate=emb_lr))
        pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim])
        # vsum
        pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum')
        pt_ss = fluid.layers.softsign(pt_sum)
        # fc layer
        pt_fc = fluid.layers.fc(
            input=pt_ss,
            size=hid_dim,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__fc__",
                learning_rate=base_lr),
            bias_attr=fluid.ParamAttr(name="__fc_b__"))
        # nt
        nt = fluid.layers.data(
            name="neg_title_ids", shape=[1], dtype="int64", lod_level=1)
        # embedding
        nt_emb = fluid.contrib.layers.sparse_embedding(
            input=nt,
            size=[dict_dim, emb_dim],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__",
                learning_rate=emb_lr))
        nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim])
        # vsum
        nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum')
        nt_ss = fluid.layers.softsign(nt_sum)
        # fc layer
        nt_fc = fluid.layers.fc(
            input=nt_ss,
            size=hid_dim,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__fc__",
                learning_rate=base_lr),
            bias_attr=fluid.ParamAttr(name="__fc_b__"))
        cos_q_pt = fluid.layers.cos_sim(q_fc, pt_fc)
        cos_q_nt = fluid.layers.cos_sim(q_fc, nt_fc)
        # loss
        avg_cost = get_loss(cos_q_pt, cos_q_nt)
        # acc
        acc = get_acc(cos_q_nt, cos_q_pt, batch_size)
        return [avg_cost, acc, cos_q_pt]

    def test(self):
152 153 154 155 156 157 158 159 160 161 162
        os.environ["PADDLE_PSERVER_NUMS"] = "2"
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
        os.environ["POD_IP"] = "127.0.0.1"
        os.environ["PADDLE_PORT"] = "36001"
        os.environ["PADDLE_TRAINER_ID"] = "0"
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = \
            "127.0.0.1:36001,127.0.0.2:36001"
        os.environ["TRAINING_ROLE"] = "PSERVER"

        role = role_maker.PaddleCloudRoleMaker()
163 164
        fleet.init(role)
        loss, acc, _ = self.net()
165

166
        strategy = paddle.distributed.fleet.DistributedStrategy()
167 168 169
        strategy.a_sync = True
        optimizer = paddle.optimizer.SGD(learning_rate=0.01)
        optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
170 171
        optimizer.minimize(loss)

172
        model_dir = tempfile.mkdtemp()
173 174

        with self.assertRaises(ValueError):
175
            fleet.init_server(os.path.join(model_dir, "temp"), "xxxx")
176 177 178 179 180 181 182 183

        with self.assertRaises(ValueError):
            fleet.init_server(os.path.join(model_dir, "temp"))

        fleet.init_server()

        from paddle.fluid.communicator import LargeScaleKV
        kv = LargeScaleKV()
184 185 186
        kv.save("__emb__.block0",
                os.path.join(model_dir, "__emb__", "__emb__.block0"))
        fluid.framework.switch_main_program(fluid.Program())
187 188 189 190 191 192
        fleet.init_server(model_dir)
        shutil.rmtree(model_dir)


if __name__ == '__main__':
    unittest.main()