unpooling.cu 6.5 KB
Newer Older
S
sweetsky0901 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

S
sweetsky0901 已提交
15
#include "paddle/operators/math/unpooling.h"
S
sweetsky0901 已提交
16 17 18 19 20 21 22 23 24
#include "paddle/platform/cuda_helper.h"

namespace paddle {
namespace operators {
namespace math {

template <typename T>
__global__ void KernelUnpool2dMax(const int nthreads,
                                  const T* input_data,
S
sweetsky0901 已提交
25
                                  const T* indices_data,
S
sweetsky0901 已提交
26 27
                                  const int input_height,
                                  const int input_width,
S
sweetsky0901 已提交
28
                                  const int channels,
S
sweetsky0901 已提交
29 30 31
                                  T* output_data,
                                  const int output_height,
                                  const int output_width) {
S
sweetsky0901 已提交
32 33 34 35
  int bsize = input_height * input_width * channels;
  int csize = input_height * input_width;
  int out_bsize = output_height * output_width * channels;
  int out_csize = output_height * output_width;
S
sweetsky0901 已提交
36 37 38
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (int i = index; i < nthreads; i += offset) {
S
sweetsky0901 已提交
39 40 41 42
    int bidx = i / bsize;
    int boffset = i % bsize;
    int cidx = boffset / csize;
    int out_offset = bidx * out_bsize + cidx * out_csize;
S
sweetsky0901 已提交
43
    int out_index = indices_data[i];
S
sweetsky0901 已提交
44
    PADDLE_ASSERT(out_index < (output_height * output_width));
S
sweetsky0901 已提交
45
    printf("-------%d------[%f]\n", out_offset + out_index, input_data[i]);
S
sweetsky0901 已提交
46 47 48 49 50 51
    output_data[out_offset + out_index] = input_data[i];
  }
}
template <typename T>
__global__ void KernelUnpool2dMaxGrad(const int nthreads,
                                      const T* input_data,
S
sweetsky0901 已提交
52
                                      const T* indices_data,
S
sweetsky0901 已提交
53 54
                                      const int input_height,
                                      const int input_width,
S
sweetsky0901 已提交
55
                                      const int channels,
S
sweetsky0901 已提交
56 57 58 59 60
                                      const T* output_data,
                                      const T* output_grad,
                                      const int output_height,
                                      const int output_width,
                                      T* input_grad) {
S
sweetsky0901 已提交
61 62 63 64
    int bsize = input_height * input_width * channels;
    int csize = input_height * input_width;
    int out_bsize = output_height * output_width * channels;
    int out_csize = output_height * output_width;
S
sweetsky0901 已提交
65 66 67
    int index = blockIdx.x * blockDim.x + threadIdx.x;
    int offset = blockDim.x * gridDim.x;
    for (int i = index; i < nthreads; i += offset) {
S
sweetsky0901 已提交
68 69 70 71 72 73 74
      int bidx = i / bsize;
      int boffset = i % bsize;
      int cidx = boffset / csize;
      int out_offset = bidx * out_bsize + cidx * out_csize;
      int out_index = indices_data[i];
      PADDLE_ASSERT(out_index < (output_height * output_width));
      input_grad[i] = output_grad[out_offset + out_index];
S
sweetsky0901 已提交
75 76 77 78 79 80
    }
}
/*
 * All tensors are in NCHW format.
 */
template <typename T>
S
sweetsky0901 已提交
81
class Unpool2dMaxFunctor<platform::GPUPlace, T> {
S
sweetsky0901 已提交
82 83 84 85 86 87 88 89 90 91 92 93
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input,
                  const framework::Tensor& indices,
                  framework::Tensor * output) {
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
    const T* input_data = input.data<T>();
S
sweetsky0901 已提交
94
    const T* indices_data = indices.data<T>();
S
sweetsky0901 已提交
95
    T* output_data = output->mutable_data<T>(context.GetPlace());
S
sweetsky0901 已提交
96
    int nthreads = batch_size * output_channels * input_height * input_width;
S
sweetsky0901 已提交
97 98 99 100 101 102 103 104
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

    KernelUnpool2dMax<
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(nthreads, input_data, indices_data,
S
sweetsky0901 已提交
105
                              input_height, input_width, output_channels,
S
sweetsky0901 已提交
106 107 108 109 110 111 112
                              output_data, output_height, output_width);
  }
};
/*
 * All tensors are in NCHW format.
 */
template <typename T>
S
sweetsky0901 已提交
113
class Unpool2dMaxGradFunctor<platform::GPUPlace, T> {
S
sweetsky0901 已提交
114 115 116
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input,
S
sweetsky0901 已提交
117
                  const framework::Tensor& indices,
S
sweetsky0901 已提交
118 119
                  framework::Tensor * input_grad,
                  const framework::Tensor& output,
S
sweetsky0901 已提交
120
                  const framework::Tensor& output_grad) {
S
sweetsky0901 已提交
121 122 123 124 125 126 127
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const T* input_data = input.data<T>();
S
sweetsky0901 已提交
128
    const T* indices_data = indices.data<T>();
S
sweetsky0901 已提交
129 130 131
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
S
sweetsky0901 已提交
132
    int nthreads = batch_size * output_channels * input_height * input_width;
S
sweetsky0901 已提交
133 134 135 136 137 138 139 140 141
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

    KernelUnpool2dMaxGrad<
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(
                              nthreads, input_data, indices_data,
S
sweetsky0901 已提交
142
                              input_height, input_width, output_channels,
S
sweetsky0901 已提交
143 144 145 146 147 148
                              output_data, output_grad_data,
                              output_height, output_width,
                              input_grad_data);
  }
};

S
sweetsky0901 已提交
149 150
template class Unpool2dMaxGradFunctor<platform::GPUPlace, float>;
template class Unpool2dMaxGradFunctor<platform::GPUPlace, double>;
S
sweetsky0901 已提交
151

S
sweetsky0901 已提交
152 153
template class Unpool2dMaxFunctor<platform::GPUPlace, float>;
template class Unpool2dMaxFunctor<platform::GPUPlace, double>;
S
sweetsky0901 已提交
154 155 156 157

}  // namespace math
}  // namespace operators
}  // namespace paddle