dropout_op.cu 9.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
Xinghai Sun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#ifdef PADDLE_WITH_CUDA
16 17
#include <cuda.h>
#include <curand_kernel.h>
18 19 20 21 22 23 24
#include "paddle/fluid/platform/dynload/curand.h"
#endif
#ifdef PADDLE_WITH_HIP
#include <hip/hip_runtime.h>
#include <hiprand_kernel.h>
#include "paddle/fluid/platform/dynload/hiprand.h"
#endif
25 26 27 28
#include <thrust/device_ptr.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/random.h>
#include <thrust/transform.h>
Z
Zhang Ting 已提交
29
#include <algorithm>
P
phlrain 已提交
30
#include <string>
31
#include "paddle/fluid/memory/memcpy.h"
Y
Yi Wang 已提交
32
#include "paddle/fluid/operators/dropout_op.h"
K
Kexin Zhao 已提交
33
#include "paddle/fluid/platform/float16.h"
34

35 36 37
namespace paddle {
namespace operators {

38
template <typename T, typename MaskType>
Z
Zhang Ting 已提交
39 40
__global__ void RandomGenerator(const size_t n, uint64_t seed,
                                const float dropout_prob, const T* src,
41
                                MaskType* mask, T* dst,
Z
Zhang Ting 已提交
42
                                bool is_upscale_in_train, uint64_t increment) {
43
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
44 45 46 47 48
#ifdef PADDLE_WITH_HIP
  hiprandStatePhilox4_32_10_t state;
  hiprand_init(seed, idx, increment, &state);
#else
  curandStatePhilox4_32_10_t state;
Z
Zhang Ting 已提交
49
  curand_init(seed, idx, increment, &state);
50
#endif
51

52 53 54
  MaskType mask_val;
  T dst_val;
  T factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
55
  for (; idx < n; idx += blockDim.x * gridDim.x) {
56
    T src_val = src[idx];
57 58 59
#ifdef PADDLE_WITH_HIP
    if (hiprand_uniform(&state) < dropout_prob) {
#else
60
    if (curand_uniform(&state) < dropout_prob) {
61
#endif
62 63
      mask_val = 0;
      dst_val = 0;
64
    } else {
65 66
      mask_val = 1;
      dst_val = is_upscale_in_train ? src_val * factor : src_val;
67
    }
68 69
    mask[idx] = mask_val;
    dst[idx] = dst_val;
70 71 72
  }
}

Z
Zhang Ting 已提交
73 74 75
template <typename T, typename MaskType, int VecSize>
__global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed,
                                          const float dropout_prob,
76 77
                                          const T* src, MaskType* mask, T* dst,
                                          bool is_upscale_in_train,
Z
Zhang Ting 已提交
78
                                          uint64_t increment) {
79 80 81
  using LoadT = platform::AlignedVector<T, VecSize>;
  using MaskLoadT = platform::AlignedVector<MaskType, VecSize>;

82 83 84 85 86
#ifdef PADDLE_WITH_HIP
  int64_t idx = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
  hiprandStatePhilox4_32_10_t state;
  hiprand_init(seed, idx, increment, &state);
#else
Z
Zhang Ting 已提交
87
  int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
Y
yaoxuefeng 已提交
88
  curandStatePhilox4_32_10_t state;
Z
Zhang Ting 已提交
89
  curand_init(seed, idx, increment, &state);
90
#endif
Y
yaoxuefeng 已提交
91

Z
Zhang Ting 已提交
92 93
  T factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
  for (int i = idx * VecSize; i < n; i += blockDim.x * gridDim.x * VecSize) {
94 95 96
    LoadT src_val;
    platform::Load<T, VecSize>(&src[i], &src_val);

97 98 99
#ifdef PADDLE_WITH_HIP
    float4 rand = hiprand_uniform4(&state);
#else
Z
Zhang Ting 已提交
100
    float4 rand = curand_uniform4(&state);
101
#endif
Z
Zhang Ting 已提交
102

103 104
    LoadT dst_val;
    MaskLoadT mask_val;
Z
Zhang Ting 已提交
105 106

#pragma unroll
107 108 109 110
    for (int j = 0; j < VecSize; j++) {
      if ((&rand.x)[j] < dropout_prob) {
        dst_val[j] = 0;
        mask_val[j] = 0;
Y
yaoxuefeng 已提交
111
      } else {
112 113
        dst_val[j] = is_upscale_in_train ? src_val[j] * factor : src_val[j];
        mask_val[j] = 1;
Y
yaoxuefeng 已提交
114 115
      }
    }
Z
Zhang Ting 已提交
116

117 118
    platform::Store<T, VecSize>(dst_val, &dst[i]);
    platform::Store<MaskType, VecSize>(mask_val, &mask[i]);
Y
yaoxuefeng 已提交
119 120 121
  }
}

122 123 124
// It seems that Eigen::Tensor::setRandom in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
K
Kexin Zhao 已提交
125
template <typename Place, typename T>
Y
Yu Yang 已提交
126
class GPUDropoutKernel : public framework::OpKernel<T> {
127 128 129
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
M
mapingshuo 已提交
130 131
    auto* seed =
        context.HasInput("Seed") ? context.Input<Tensor>("Seed") : nullptr;
132 133
    auto* y = context.Output<Tensor>("Out");
    y->mutable_data<T>(context.GetPlace());
K
Kexin Zhao 已提交
134
    float dropout_prob = context.Attr<float>("dropout_prob");
135

Z
Zeng Jinle 已提交
136
    auto& dropout_implementation =
P
phlrain 已提交
137
        context.Attr<std::string>("dropout_implementation");
Z
Zeng Jinle 已提交
138 139
    bool upscale_in_train = (dropout_implementation == "upscale_in_train");

Q
QI JUN 已提交
140
    auto& place = *context.template device_context<Place>().eigen_device();
141
    if (!context.Attr<bool>("is_test")) {
Z
Zeng Jinle 已提交
142 143 144
      int64_t x_numel = x->numel();
      auto stream = context.cuda_device_context().stream();

145
      auto* mask = context.Output<Tensor>("Mask");
Z
Zeng Jinle 已提交
146
      auto* mask_data = mask->mutable_data<uint8_t>(context.GetPlace());
D
dzhwinter 已提交
147 148 149
      size_t size = framework::product(mask->dims());
      auto* x_data = x->data<T>();
      auto* y_data = y->mutable_data<T>(context.GetPlace());
Z
Zeng Jinle 已提交
150
      if (dropout_prob == 1.0f) {
151 152 153 154 155 156
#ifdef PADDLE_WITH_HIP
        PADDLE_ENFORCE_CUDA_SUCCESS(
            hipMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
        PADDLE_ENFORCE_CUDA_SUCCESS(
            hipMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream));
#else
157 158 159 160
        PADDLE_ENFORCE_CUDA_SUCCESS(
            cudaMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
        PADDLE_ENFORCE_CUDA_SUCCESS(cudaMemsetAsync(
            mask_data, 0, x_numel * sizeof(*mask_data), stream));
161
#endif
Z
Zeng Jinle 已提交
162 163
        return;
      }
164

Z
Zhang Ting 已提交
165
      const auto& dev_ctx = context.cuda_device_context();
Z
Zhang Ting 已提交
166 167
      platform::GpuLaunchConfig config =
          platform::GetGpuLaunchConfig1D(dev_ctx, size);
Z
Zhang Ting 已提交
168 169 170 171 172 173 174 175 176 177

      // increment is used to set the args(offset) of curand_init, which defines
      // offset in subsequence.
      // The detail:
      // https://docs.nvidia.com/cuda/curand/device-api-overview.html
      // Increment should be at least the number of curand() random numbers used
      // in each thread to avoid the random number generated this time being the
      // same as the previous calls.
      uint64_t seed_data;
      uint64_t increment;
178
      int vec_size = platform::GetVectorizedSize<T>(x_data);
Z
Zhang Ting 已提交
179 180 181 182
      auto offset = ((x_numel - 1) / (config.block_per_grid.x *
                                      config.thread_per_block.x * vec_size) +
                     1) *
                    vec_size;
Z
Zhang Ting 已提交
183 184 185 186
      int device_id = BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace())
                          .GetDeviceId();
      auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);

187
      if (seed && platform::is_gpu_place(seed->place())) {
Z
Zhang Ting 已提交
188 189 190 191 192 193 194 195
        framework::Tensor seed_cpu_tensor;
        TensorCopySync(*seed, platform::CPUPlace(), &seed_cpu_tensor);
        seed_data = static_cast<uint64_t>(seed_cpu_tensor.data<int>()[0]);
        increment = offset;
      } else if (gen_cuda->GetIsInitPy() && (!context.Attr<bool>("fix_seed"))) {
        auto seed_offset = gen_cuda->IncrementOffset(offset);
        seed_data = seed_offset.first;
        increment = seed_offset.second;
196
      } else {
Z
Zhang Ting 已提交
197 198 199 200 201 202 203 204
        if (seed) {
          seed_data = *(seed->data<int>());
        } else {
          std::random_device rnd;
          seed_data = context.Attr<bool>("fix_seed") ? context.Attr<int>("seed")
                                                     : rnd();
        }
        increment = offset;
205 206
      }

207 208 209 210 211 212 213 214 215 216 217 218 219 220
#ifdef __HIPCC__
      if (vec_size == 4 && size % 4 == 0) {
        hipLaunchKernelGGL(
            HIP_KERNEL_NAME(VectorizedRandomGenerator<T, uint8_t, 4>),
            config.block_per_grid, config.thread_per_block, 0, stream, size,
            seed_data, dropout_prob, x_data, mask_data, y_data,
            upscale_in_train, increment);
      } else {
        hipLaunchKernelGGL(HIP_KERNEL_NAME(RandomGenerator<T, uint8_t>),
                           config.block_per_grid, config.thread_per_block, 0,
                           stream, size, seed_data, dropout_prob, x_data,
                           mask_data, y_data, upscale_in_train, increment);
      }
#else
Z
Zhang Ting 已提交
221 222 223 224
      if (vec_size == 4 && size % 4 == 0) {
        VectorizedRandomGenerator<
            T, uint8_t,
            4><<<config.block_per_grid, config.thread_per_block, 0, stream>>>(
Z
Zhang Ting 已提交
225 226 227
            size, seed_data, dropout_prob, x_data, mask_data, y_data,
            upscale_in_train, increment);
      } else {
Z
Zhang Ting 已提交
228 229
        RandomGenerator<T, uint8_t><<<config.block_per_grid,
                                      config.thread_per_block, 0, stream>>>(
Z
Zhang Ting 已提交
230 231
            size, seed_data, dropout_prob, x_data, mask_data, y_data,
            upscale_in_train, increment);
Y
yaoxuefeng 已提交
232
      }
233
#endif
234
    } else {
235 236
      auto X = EigenMatrix<T>::Reshape(*x, 1);
      auto Y = EigenMatrix<T>::Reshape(*y, 1);
Z
Zeng Jinle 已提交
237
      if (upscale_in_train) {
P
phlrain 已提交
238 239 240 241
        Y.device(place) = X;
      } else {
        Y.device(place) = X * static_cast<T>(1.0f - dropout_prob);
      }
242
    }
243 244 245 246 247 248
  }
};

}  // namespace operators
}  // namespace paddle

X
Xinghai Sun 已提交
249
namespace ops = paddle::operators;
K
Kexin Zhao 已提交
250
namespace plat = paddle::platform;
Q
QI JUN 已提交
251
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
252
    dropout, ops::GPUDropoutKernel<plat::CUDADeviceContext, float>,
P
phlrain 已提交
253 254 255 256
    ops::GPUDropoutKernel<plat::CUDADeviceContext, plat::float16>,
    ops::GPUDropoutKernel<plat::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    dropout_grad, ops::DropoutGradKernel<plat::CUDADeviceContext, float>,
257
    ops::DropoutGradKernel<plat::CUDADeviceContext, plat::float16>,
P
phlrain 已提交
258
    ops::DropoutGradKernel<plat::CUDADeviceContext, double>);