kernel.h 6.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <map>
#include <memory>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/lite/core/context.h"
#include "paddle/fluid/lite/core/target_wrapper.h"
#include "paddle/fluid/lite/core/type_system.h"
#include "paddle/fluid/lite/core/types.h"
#include "paddle/fluid/lite/operators/op_params.h"
#include "paddle/fluid/lite/utils/all.h"

namespace paddle {
namespace lite {

// An base with virtual functions to unify all the kernel implementation on
// different targets.
class KernelBase {
 public:
  // type_infer_handler is used to inference a output type by considering the
  // input types in the type system.
  using type_infer_handler_t = std::function<const Type*(
      const std::map<std::string, const Type*>& input_types,
      const std::string& out_arg)>;

T
tensor-tang 已提交
44 45 46 47 48 49
 protected:
  /// Run some initialization before `Run`, it will invoke after `SetParam` and
  /// `SetContext`, that is both the param_ and context_ are valid.
  virtual void PrepareForRun() {}

  /// Run the kernel. Before Run, both the param_ and context_ should be valid.
T
tensor-tang 已提交
50 51
  virtual void Run() = 0;

T
tensor-tang 已提交
52 53 54 55 56 57 58 59 60 61
 public:
  void Launch() {
    if (is_first_epoch_) {
      PrepareForRun();
      is_first_epoch_ = false;
    }

    Run();
  }

T
tensor-tang 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
  void SetContext(std::unique_ptr<KernelContext>&& ctx) {
    ctx_ = std::move(ctx);
  }
  template <typename T>
  void SetParam(T param) {
    param_.set<T>(param);
  }
  template <typename P>
  P& Param() const {
    return *param_.get_mutable<P>();
  }

  // This is used in the kernels that takes 'kAny' places and inference the
  // output place. For `ScaleCompute` and `IoCopyCompute`, their input types are
  // declared as 'kAny' in some Place field, and the output is also `kAny`, but
  // when in real execution, when takes some non-kAny type as input, the
  // output's kAny-fields can be determained. For example, when the
  // `ScaleCompute` takes `TensorFp32NCHWTy` as input, its output should be also
  // `TensorFp32NCHWTy`. This type inference rule is different for each kernel,
  // so we make it a virtual method.
  // One can custom this handler to make a specific type inference rule for a
  // kernel, or leave the default to force the kernel use the system's
  // type-inference rules.
  virtual std::unique_ptr<type_infer_handler_t> GetTypeInferHandler() {
    return nullptr;
  }

  void set_op_type(const std::string& type) { op_type_ = type; }
  const std::string& op_type() const { return op_type_; }

  // Get input declaration Type.
  const Type* GetInputDeclType(const std::string& arg_name);

  // Get output declaration Type.
  const Type* GetOutputDeclType(const std::string& arg_name);

  void set_alias(const std::string& x) { alias_ = x; }
  const std::string& alias() const { return alias_; }

  virtual Place place() const = 0;
  virtual TargetType target() const = 0;
  virtual PrecisionType precision() const = 0;
  virtual DataLayoutType layout() const = 0;
  const KernelContext* context() const { return ctx_.get(); }
  virtual std::string name() const = 0;

  // Short human-readable document.
  std::string summary() const;
  // Long human-readable document.
  virtual std::string doc() const { return ""; }
  // Generate the key of the parameter type.
  std::string GenParamTypeKey() const;

  std::string SerializedKernelType() const {
    return SerializeKernelType(op_type(), alias(), place());
  }

  static std::string SerializeKernelType(const std::string& op_type,
                                         const std::string& alias,
                                         const Place& place) {
    std::stringstream ss;
    ss << op_type << "/";
    ss << alias << "/";
    // We serialize the place value not the string representation here for
    // easier deserialization.
    ss << static_cast<int>(place.target) << "/";
    ss << static_cast<int>(place.precision) << "/";
    ss << static_cast<int>(place.layout);
    return ss.str();
  }

  static void ParseKernelType(const std::string& kernel_type,
                              std::string* op_type, std::string* alias,
                              Place* place) {
    std::stringstream ss(kernel_type);
    std::getline(ss, *op_type, '/');
    std::getline(ss, *alias, '/');
    std::string target, precision, layout;
    std::getline(ss, target, '/');
    std::getline(ss, precision, '/');
    std::getline(ss, layout, '/');

    place->target = static_cast<TargetType>(std::stoi(target));
    place->precision = static_cast<PrecisionType>(std::stoi(precision));
    place->layout = static_cast<DataLayoutType>(std::stoi(layout));
  }

  virtual ~KernelBase() = default;
  void Torch() {}

 protected:
  std::unique_ptr<KernelContext> ctx_;
  mutable operators::param_t param_;
  // The corresponding op type.
  std::string op_type_{};
  // The extra identity to help defficiate a specific kernel, op_type_ + alias_
  // is the unique ID for the kernel.
  std::string alias_{};
T
tensor-tang 已提交
160
  bool is_first_epoch_{true};
T
tensor-tang 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
};

// Light-weight kernel implementation.
// The OpKernel is designed to implement the specific algorithm on a target
// device.
// TODO(Superjomn) Consider to add a Platform type to differentiate CUDNN,
// MKLDNN, plain CUDA C implementations.
template <TargetType Target, PrecisionType Precision,
          DataLayoutType DataLayout = DataLayoutType::kNCHW>
class KernelLite : public KernelBase {
 public:
  // Run the kernel.
  virtual void Run() { CHECK(false) << "Not Implemented"; }

  TargetType target() const override { return Target; }
  PrecisionType precision() const override { return Precision; }
  DataLayoutType layout() const override { return DataLayout; }
  Place place() const override { return Place{Target, Precision, DataLayout}; }
  std::string name() const override;

  void Touch() {}

  KernelLite() = default;
  virtual ~KernelLite() = default;
};

template <TargetType Target, PrecisionType Precision, DataLayoutType DataLayout>
std::string KernelLite<Target, Precision, DataLayout>::name() const {
  return op_type() + ":" + TargetToStr(Target) + "/" +
         PrecisionToStr(Precision) + "/" + DataLayoutToStr(DataLayout);
}

}  // namespace lite
}  // namespace paddle