cholesky_solve_grad_kernel_impl.h 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/phi/kernels/cholesky_solve_grad_kernel.h"

#include "paddle/phi/kernels/cholesky_solve_kernel.h"
#include "paddle/phi/kernels/complex_kernel.h"
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/expand_kernel.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/common_shape.h"
#include "paddle/phi/kernels/funcs/complex_functors.h"
#include "paddle/phi/kernels/funcs/matrix_reduce.h"
#include "paddle/phi/kernels/math_kernel.h"
#include "paddle/phi/kernels/transpose_kernel.h"

// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/operators/tril_triu_op.h"

namespace phi {

template <typename T, typename Context>
void CholeskySolveGradKernel(const Context& dev_ctx,
                             const DenseTensor& x,
                             const DenseTensor& y,
                             const DenseTensor& out,
                             const DenseTensor& dout,
                             bool upper,
                             DenseTensor* dx,
                             DenseTensor* dy) {
  // get broadcast dim
  std::vector<int64_t> x_bst_dims_vec;
  std::vector<int64_t> y_bst_dims_vec;
  std::tie(x_bst_dims_vec, y_bst_dims_vec) =
      funcs::MatrixGetBroadcastDims(x, y);
  ScalarArray x_bst_dims(x_bst_dims_vec);
  ScalarArray y_bst_dims(y_bst_dims_vec);

  // Tensor broadcast to temp 'y_bst'
  DenseTensor y_bst = phi::Empty<T, Context>(dev_ctx, y_bst_dims);
  ExpandKernel<T, Context>(dev_ctx, y, y_bst_dims, &y_bst);

  // reuse forward to calculate dx_bst, which is broad_cast of dx
  DenseTensor dx_bst = phi::Empty<T, Context>(dev_ctx, x_bst_dims);
  CholeskySolveKernel<T, Context>(dev_ctx, dout, y_bst, upper, &dx_bst);

  // get 'dx' according to 'dx_bst'
  dx->Resize(x.dims());
  dev_ctx.template Alloc<T>(dx);
  if (dx_bst.dims() == x.dims()) {
    Copy<Context>(dev_ctx, dx_bst, dev_ctx.GetPlace(), false, dx);
  } else {
    funcs::MatrixReduceSumFunctor<T, Context> functor;
    functor(dev_ctx, dx_bst, dx);
    dx->Resize(x.dims());
  }

  // calculate out's conjugate for complex
  DenseTensor out_conj = Conj<T, Context>(dev_ctx, out);
  out_conj = phi::TransposeLast2Dim<T>(dev_ctx, out_conj);

  DenseTensor commonterm = phi::Empty<T, Context>(dev_ctx, y_bst_dims);
  auto blas = phi::funcs::GetBlas<Context, T>(dev_ctx);
  blas.MatMul(dx_bst,
              phi::funcs::CreateMatrixDescriptor(dx_bst.dims(), 0, false),
              out_conj,
              phi::funcs::CreateMatrixDescriptor(out_conj.dims(), 0, false),
              static_cast<T>(1),
              &commonterm,
              static_cast<T>(0));

  // calculate commonterm's conjugate for complex
  DenseTensor commonterm_conj = Conj<T, Context>(dev_ctx, commonterm);
  commonterm_conj = phi::TransposeLast2Dim<T>(dev_ctx, commonterm_conj);

  phi::AddRawKernel<T>(dev_ctx, commonterm, commonterm_conj, -1, &commonterm);

  DenseTensor dy_bst = phi::Empty<T, Context>(dev_ctx, y_bst_dims);
  if (upper) {
    blas.MatMul(y_bst,
                phi::funcs::CreateMatrixDescriptor(y_bst.dims(), 0, false),
                commonterm,
                phi::funcs::CreateMatrixDescriptor(commonterm.dims(), 0, false),
                static_cast<T>(-1),
                &dy_bst,
                static_cast<T>(0));
  } else {
    blas.MatMul(commonterm,
                phi::funcs::CreateMatrixDescriptor(commonterm.dims(), 0, false),
                y_bst,
                phi::funcs::CreateMatrixDescriptor(y_bst.dims(), 0, false),
                static_cast<T>(-1),
                &dy_bst,
                static_cast<T>(0));
  }

  // get upper or lower of 'dy_bst'
  DenseTensor dy_bst_upper = phi::Empty<T, Context>(dev_ctx, y_bst_dims);

  int y_bst_ndim = y_bst_dims_vec.size();
  const auto H = y_bst_dims_vec[y_bst_ndim - 2];
  const auto W = y_bst_dims_vec[y_bst_ndim - 1];
  phi::funcs::ForRange<Context> y_for_range(dev_ctx, dy_bst.numel());
  paddle::operators::TrilTriuCompute<T> tril_triu_functor(
      dy_bst.data<T>(), 0, !upper, H, W, dy_bst_upper.data<T>());
  y_for_range(tril_triu_functor);

  // get 'dy' according to 'dy_bst'
  dy->Resize(y.dims());
  dev_ctx.template Alloc<T>(dy);
  if (dy_bst_upper.dims() == y.dims()) {
    Copy<Context>(dev_ctx, dy_bst_upper, dev_ctx.GetPlace(), false, dy);
  } else {
    funcs::MatrixReduceSumFunctor<T, Context> functor;
    functor(dev_ctx, dy_bst_upper, dy);
    dy->Resize(y.dims());
  }
}

}  // namespace phi