laplace.py 12.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numbers

import numpy as np
import paddle
from paddle.distribution import distribution
from paddle.fluid import framework as framework


class Laplace(distribution.Distribution):
    r"""
    Creates a Laplace distribution parameterized by :attr:`loc` and :attr:`scale`.

    Mathematical details

    The probability density function (pdf) is

    .. math::
        pdf(x; \mu, \sigma) = \frac{1}{2 * \sigma} * e^{\frac{-|x - \mu|}{\sigma}}

    In the above equation:

    * :math:`loc = \mu`: is the location parameter.
    * :math:`scale = \sigma`: is the scale parameter.

    Args:
        loc (scalar|Tensor): The mean of the distribution.
        scale (scalar|Tensor): The scale of the distribution.

    Examples:
        .. code-block:: python

                        import paddle

                        m = paddle.distribution.Laplace(paddle.to_tensor([0.0]), paddle.to_tensor([1.0]))
                        m.sample()  # Laplace distributed with loc=0, scale=1
                        # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
                        # [3.68546247])

    """

    def __init__(self, loc, scale):
        if not isinstance(loc, (numbers.Real, framework.Variable)):
            raise TypeError(
                f"Expected type of loc is Real|Variable, but got {type(loc)}")

        if not isinstance(scale, (numbers.Real, framework.Variable)):
            raise TypeError(
                f"Expected type of scale is Real|Variable, but got {type(scale)}"
            )

        if isinstance(loc, numbers.Real):
            loc = paddle.full(shape=(), fill_value=loc)

        if isinstance(scale, numbers.Real):
            scale = paddle.full(shape=(), fill_value=scale)

        if (len(scale.shape) > 0 or len(loc.shape) > 0) and (loc.dtype
                                                             == scale.dtype):
            self.loc, self.scale = paddle.broadcast_tensors([loc, scale])
        else:
            self.loc, self.scale = loc, scale

        super(Laplace, self).__init__(self.loc.shape)

    @property
    def mean(self):
        """Mean of distribution.

        Returns:
            Tensor: The mean value.
        """
        return self.loc

    @property
    def stddev(self):
        r"""Standard deviation.

        The stddev is

        .. math::
            stddev = \sqrt{2} * \sigma

        In the above equation:

        * :math:`scale = \sigma`: is the scale parameter.

        Returns:
            Tensor: The std value.
        """
        return (2**0.5) * self.scale

    @property
    def variance(self):
108
        r"""Variance of distribution.
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

        The variance is

        .. math::
            variance = 2 * \sigma^2

        In the above equation:

        * :math:`scale = \sigma`: is the scale parameter.

        Returns:
            Tensor: The variance value.
        """
        return self.stddev.pow(2)

    def _validate_value(self, value):
        """Argument dimension check for distribution methods such as `log_prob`,
        `cdf` and `icdf`.

        Args:
          value (Tensor|Scalar): The input value, which can be a scalar or a tensor.

        Returns:
          loc, scale, value: The broadcasted loc, scale and value, with the same dimension and data type.
        """
        if isinstance(value, numbers.Real):
            value = paddle.full(shape=(), fill_value=value)
        if value.dtype != self.scale.dtype:
            value = paddle.cast(value, self.scale.dtype)
        if len(self.scale.shape) > 0 or len(self.loc.shape) > 0 or len(
                value.shape) > 0:
            loc, scale, value = paddle.broadcast_tensors(
                [self.loc, self.scale, value])
        else:
            loc, scale = self.loc, self.scale

        return loc, scale, value

    def log_prob(self, value):
        r"""Log probability density/mass function.

        The log_prob is

        .. math::
            log\_prob(value) = \frac{-log(2 * \sigma) - |value - \mu|}{\sigma}

        In the above equation:

        * :math:`loc = \mu`: is the location parameter.
        * :math:`scale = \sigma`: is the scale parameter.

        Args:
          value (Tensor|Scalar): The input value, can be a scalar or a tensor.

        Returns:
          Tensor: The log probability, whose data type is same with value.

        Examples:
            .. code-block:: python

                            import paddle

                            m = paddle.distribution.Laplace(paddle.to_tensor([0.0]), paddle.to_tensor([1.0]))
                            value = paddle.to_tensor([0.1])
                            m.log_prob(value)
                            # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
                            # [-0.79314721])

        """
        loc, scale, value = self._validate_value(value)
        log_scale = -paddle.log(2 * scale)

        return (log_scale - paddle.abs(value - loc) / scale)

    def entropy(self):
        r"""Entropy of Laplace distribution.

        The entropy is:

        .. math::
            entropy() = 1 + log(2 * \sigma)

        In the above equation:

        * :math:`scale = \sigma`: is the scale parameter.

        Returns:
            The entropy of distribution.

        Examples:
            .. code-block:: python

                            import paddle

                            m = paddle.distribution.Laplace(paddle.to_tensor([0.0]), paddle.to_tensor([1.0]))
                            m.entropy()
                            # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
                            # [1.69314718])
        """
        return 1 + paddle.log(2 * self.scale)

    def cdf(self, value):
        r"""Cumulative distribution function.

        The cdf is

        .. math::
            cdf(value) = 0.5 - 0.5 * sign(value - \mu) * e^\frac{-|(\mu - \sigma)|}{\sigma}

        In the above equation:

        * :math:`loc = \mu`: is the location parameter.
        * :math:`scale = \sigma`: is the scale parameter.

        Args:
            value (Tensor): The value to be evaluated.

        Returns:
            Tensor: The cumulative probability of value.

        Examples:
            .. code-block:: python

                            import paddle

                            m = paddle.distribution.Laplace(paddle.to_tensor([0.0]), paddle.to_tensor([1.0]))
                            value = paddle.to_tensor([0.1])
                            m.cdf(value)
                            # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
                            # [0.54758132])
        """
        loc, scale, value = self._validate_value(value)
        iterm = (0.5 * (value - loc).sign() *
                 paddle.expm1(-(value - loc).abs() / scale))

        return 0.5 - iterm

    def icdf(self, value):
        r"""Inverse Cumulative distribution function.

        The icdf is

        .. math::
            cdf^{-1}(value)= \mu - \sigma * sign(value - 0.5) * ln(1 - 2 * |value-0.5|)

        In the above equation:

        * :math:`loc = \mu`: is the location parameter.
        * :math:`scale = \sigma`: is the scale parameter.

        Args:
            value (Tensor): The value to be evaluated.

        Returns:
            Tensor: The cumulative probability of value.

        Examples:
            .. code-block:: python

                            import paddle

                            m = paddle.distribution.Laplace(paddle.to_tensor([0.0]), paddle.to_tensor([1.0]))
                            value = paddle.to_tensor([0.1])
                            m.icdf(value)
                            # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
                            # [-1.60943794])
        """
        loc, scale, value = self._validate_value(value)
        term = value - 0.5

        return (loc - scale * (term).sign() * paddle.log1p(-2 * term.abs()))

    def sample(self, shape=()):
        r"""Generate samples of the specified shape.

        Args:
            shape(tuple[int]): The shape of generated samples.

        Returns:
            Tensor: A sample tensor that fits the Laplace distribution.

        Examples:
            .. code-block:: python

                            import paddle

                            m = paddle.distribution.Laplace(paddle.to_tensor([0.0]), paddle.to_tensor([1.0]))
                            m.sample()  # Laplace distributed with loc=0, scale=1
                            # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
                            # [3.68546247])
        """
        if not isinstance(shape, tuple):
            raise TypeError(
                f'Expected shape should be tuple[int], but got {type(shape)}')

        with paddle.no_grad():
            return self.rsample(shape)

    def rsample(self, shape):
        r"""Reparameterized sample.

        Args:
            shape(tuple[int]): The shape of generated samples.

        Returns:
            Tensor: A sample tensor that fits the Laplace distribution.

        Examples:
            .. code-block:: python

                            import paddle

                            m = paddle.distribution.Laplace(paddle.to_tensor([0.0]), paddle.to_tensor([1.0]))
                            m.rsample((1,))  # Laplace distributed with loc=0, scale=1
                            # Tensor(shape=[1, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
                            # [[0.04337667]])
        """

        eps = self._get_eps()
        shape = self._extend_shape(shape) or (1, )
        uniform = paddle.uniform(shape=shape,
                                 min=float(np.nextafter(-1, 1)) + eps / 2,
                                 max=1. - eps / 2,
                                 dtype=self.loc.dtype)

        if len(self.scale.shape) == 0 and len(self.loc.shape) == 0:
            loc, scale, uniform = paddle.broadcast_tensors(
                [self.loc, self.scale, uniform])
        else:
            loc, scale = self.loc, self.scale

        return (loc - scale * uniform.sign() * paddle.log1p(-uniform.abs()))

    def _get_eps(self):
        """
        Get the eps of certain data type.

        Note:
            Since paddle.finfo is temporarily unavailable, we
            use hard-coding style to get eps value.

        Returns:
            Float: An eps value by different data types.
        """
        eps = 1.19209e-07
        if (self.loc.dtype == paddle.float64
                or self.loc.dtype == paddle.complex128):
            eps = 2.22045e-16

        return eps

    def kl_divergence(self, other):
        r"""Calculate the KL divergence KL(self || other) with two Laplace instances.

        The kl_divergence between two Laplace distribution is

        .. math::
            KL\_divergence(\mu_0, \sigma_0; \mu_1, \sigma_1) = 0.5 (ratio^2 + (\frac{diff}{\sigma_1})^2 - 1 - 2 \ln {ratio})

        .. math::
            ratio = \frac{\sigma_0}{\sigma_1}

        .. math::
            diff = \mu_1 - \mu_0

        In the above equation:

        * :math:`loc = \mu`: is the location parameter of self.
        * :math:`scale = \sigma`: is the scale parameter of self.
        * :math:`loc = \mu_1`: is the location parameter of the reference Laplace distribution.
        * :math:`scale = \sigma_1`: is the scale parameter of the reference Laplace distribution.
        * :math:`ratio`: is the ratio between the two distribution.
        * :math:`diff`: is the difference between the two distribution.

        Args:
            other (Laplace): An instance of Laplace.

        Returns:
            Tensor: The kl-divergence between two laplace distributions.

        Examples:
            .. code-block:: python

                            import paddle

                            m1 = paddle.distribution.Laplace(paddle.to_tensor([0.0]), paddle.to_tensor([1.0]))
                            m2 = paddle.distribution.Laplace(paddle.to_tensor([1.0]), paddle.to_tensor([0.5]))
                            m1.kl_divergence(m2)
                            # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
                            # [1.04261160])
        """

        var_ratio = other.scale / self.scale
        t = paddle.abs(self.loc - other.loc)
        term1 = ((self.scale * paddle.exp(-t / self.scale) + t) / other.scale)
        term2 = paddle.log(var_ratio)

        return term1 + term2 - 1