mixed_vector.h 14.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

17
#include <algorithm>
D
dzhwinter 已提交
18
#include <initializer_list>
19
#include <memory>
Y
Yu Yang 已提交
20
#include <mutex>  // NOLINT
21
#include <utility>
D
dzhwinter 已提交
22
#include <vector>
23
#include "paddle/fluid/framework/details/cow_ptr.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
26
#include "paddle/fluid/memory/memcpy.h"
Y
Yu Yang 已提交
27 28

#include "glog/logging.h"
D
dzhwinter 已提交
29 30 31 32

namespace paddle {
namespace framework {

33
#if defined(PADDLE_WITH_CUDA)
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
namespace details {
struct CUDABuffer {
  void *data_{nullptr};
  size_t size_{0};
  platform::CUDAPlace place_;

  CUDABuffer() {}
  CUDABuffer(platform::Place place, size_t size)
      : size_(size), place_(boost::get<platform::CUDAPlace>(place)) {
    data_ = memory::Alloc(place_, size);
  }

  ~CUDABuffer() { ClearMemory(); }

  CUDABuffer(const CUDABuffer &o) = delete;
  CUDABuffer &operator=(const CUDABuffer &o) = delete;

  void Resize(platform::Place place, size_t size) {
    ClearMemory();
    place_ = boost::get<platform::CUDAPlace>(place);
    data_ = memory::Alloc(place_, size);
Y
Yu Yang 已提交
55
    PADDLE_ENFORCE_NOT_NULL(data_);
56 57 58 59 60 61 62 63 64 65 66
    size_ = size;
  }

  void Swap(CUDABuffer &o) {
    std::swap(data_, o.data_);
    std::swap(place_, o.place_);
    std::swap(size_, o.size_);
  }

 private:
  void ClearMemory() const {
Y
Yu Yang 已提交
67
    if (data_ != nullptr) {
68 69 70 71 72 73
      memory::Free(place_, data_);
    }
  }
};
}  // namespace details

Y
Yu Yang 已提交
74 75
// Vector<T> implements the std::vector interface, and can get Data or
// MutableData from any place. The data will be synced implicitly inside.
D
dzhwinter 已提交
76
template <typename T>
Y
Yu Yang 已提交
77
class Vector {
D
dzhwinter 已提交
78
 public:
Y
Yu Yang 已提交
79
  using value_type = T;
80 81
  using iterator = typename std::vector<T>::iterator;
  using const_iterator = typename std::vector<T>::const_iterator;
C
chengduoZH 已提交
82

83 84 85 86 87 88 89 90 91 92 93
 private:
  // The actual class to implement vector logic
  class VectorData {
   public:
    VectorData() : flag_(kDataInCPU) {}
    VectorData(size_t count, const T &value)
        : cpu_(count, value), flag_(kDataInCPU) {}
    VectorData(std::initializer_list<T> init) : cpu_(init), flag_(kDataInCPU) {}
    template <typename U>
    explicit VectorData(const std::vector<U> &dat)
        : cpu_(dat), flag_(kDataInCPU) {}
Y
Yu Yang 已提交
94
    ~VectorData() {}
95 96 97 98 99 100

    VectorData(const VectorData &o) {
      o.ImmutableCPU();
      cpu_ = o.cpu_;
      flag_ = kDataInCPU;
    }
C
chengduoZH 已提交
101

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    VectorData &operator=(const VectorData &o) {
      o.ImmutableCPU();
      cpu_ = o.cpu_;
      flag_ = kDataInCPU;
      details::CUDABuffer null;
      gpu_.Swap(null);
      return *this;
    }

    T &operator[](size_t i) {
      MutableCPU();
      return cpu_[i];
    }

    const T &operator[](size_t i) const {
      ImmutableCPU();
      return cpu_[i];
    }

    size_t size() const { return cpu_.size(); }

    iterator begin() {
      MutableCPU();
      return cpu_.begin();
    }

    iterator end() {
      MutableCPU();
      return cpu_.end();
    }

    T &front() {
      MutableCPU();
      return cpu_.front();
    }

    T &back() {
      MutableCPU();
      return cpu_.back();
    }

    const_iterator begin() const {
      ImmutableCPU();
      return cpu_.begin();
    }

    const_iterator end() const {
      ImmutableCPU();
      return cpu_.end();
    }

    const T &back() const {
      ImmutableCPU();
      return cpu_.back();
    }

    T *data() { return &(*this)[0]; }

    const T *data() const { return &(*this)[0]; }

    const T &front() const {
      ImmutableCPU();
      return cpu_.front();
    }

    // assign this from iterator.
    // NOTE: the iterator must support `end-begin`
    template <typename Iter>
    void assign(Iter begin, Iter end) {
      MutableCPU();
      cpu_.assign(begin, end);
    }

    // push_back. If the previous capacity is not enough, the memory will
    // double.
    void push_back(T elem) {
      MutableCPU();
      cpu_.push_back(elem);
    }

    // extend a vector by iterator.
    // NOTE: the iterator must support end-begin
    template <typename It>
    void Extend(It begin, It end) {
      MutableCPU();
      auto out_it = std::back_inserter<std::vector<T>>(this->cpu_);
      std::copy(begin, end, out_it);
    }

    // resize the vector
    void resize(size_t size) {
      MutableCPU();
      cpu_.resize(size);
    }

    // get cuda ptr. immutable
    const T *CUDAData(platform::Place place) const {
      PADDLE_ENFORCE(platform::is_gpu_place(place),
                     "CUDA Data must on CUDA place");
      ImmutableCUDA(place);
      return reinterpret_cast<T *>(gpu_.data_);
    }

    // get cuda ptr. mutable
    T *CUDAMutableData(platform::Place place) {
      const T *ptr = CUDAData(place);
      flag_ = kDirty | kDataInCUDA;
      return const_cast<T *>(ptr);
    }

    // clear
    void clear() {
      cpu_.clear();
      flag_ = kDirty | kDataInCPU;
    }

    size_t capacity() const { return cpu_.capacity(); }

    // reserve data
Y
Yu Yang 已提交
221
    void reserve(size_t size) const { cpu_.reserve(size); }
222 223 224 225 226 227 228 229 230 231 232 233 234

    // implicit cast operator. Vector can be cast to std::vector implicitly.
    operator std::vector<T>() const {
      ImmutableCPU();
      return cpu_;
    }

    bool operator==(const VectorData &other) const {
      ImmutableCPU();
      other.ImmutableCPU();
      return cpu_ == other.cpu_;
    }

Y
Yu Yang 已提交
235 236 237 238 239 240 241 242 243 244 245
    std::mutex &Mutex() const { return mtx_; }

    std::unique_ptr<platform::CUDAPlace> CUDAPlace() const {
      if (gpu_.data_ == nullptr) {
        return nullptr;
      } else {
        return std::unique_ptr<platform::CUDAPlace>(
            new platform::CUDAPlace(gpu_.place_));
      }
    }

246 247 248 249 250 251 252 253 254 255
   private:
    enum DataFlag {
      kDataInCPU = 0x01,
      kDataInCUDA = 0x02,
      // kDirty means the data has been changed in one device.
      kDirty = 0x10
    };

    void CopyToCPU() const {
      // COPY GPU Data To CPU
Y
Yu Yang 已提交
256 257 258 259
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          platform::DeviceContextPool::Instance().Get(
              platform::Place(gpu_.place_)));
      auto stream = dev_ctx->stream();
260 261 262
      void *src = gpu_.data_;
      void *dst = cpu_.data();
      memory::Copy(platform::CPUPlace(), dst, gpu_.place_, src, gpu_.size_,
Y
Yu Yang 已提交
263 264
                   stream);
      dev_ctx->Wait();
265 266 267 268 269
    }

    void MutableCPU() {
      if (IsInCUDA() && IsDirty()) {
        CopyToCPU();
270
      }
271
      flag_ = kDirty | kDataInCPU;
272
    }
C
chengduoZH 已提交
273

274 275 276 277 278 279 280 281
    void ImmutableCUDA(platform::Place place) const {
      if (IsDirty()) {
        if (IsInCPU()) {
          CopyCPUDataToCUDA(place);
          UnsetFlag(kDirty);
          SetFlag(kDataInCUDA);
        } else if (IsInCUDA() &&
                   !(boost::get<platform::CUDAPlace>(place) == gpu_.place_)) {
Y
Yu Yang 已提交
282
          PADDLE_THROW("This situation should not happen");
283 284 285 286 287 288 289 290 291 292 293
          // Still dirty
        } else {
          // Dirty && DataInCUDA && Device is same
          // Do nothing
        }
      } else {
        if (!IsInCUDA()) {
          // Even data is not dirty. However, data is not in CUDA. Copy data.
          CopyCPUDataToCUDA(place);
          SetFlag(kDataInCUDA);
        } else if (!(boost::get<platform::CUDAPlace>(place) == gpu_.place_)) {
Y
Yu Yang 已提交
294
          PADDLE_THROW("This situation should not happen.");
295 296 297 298 299
        } else {
          // Not Dirty && DataInCUDA && Device is same
          // Do nothing.
        }
      }
300
    }
301 302 303 304 305

    void CopyCPUDataToCUDA(const platform::Place &place) const {
      void *src = cpu_.data();
      gpu_.Resize(place, cpu_.size() * sizeof(T));
      void *dst = gpu_.data_;
Y
Yu Yang 已提交
306 307 308
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          platform::DeviceContextPool::Instance().Get(place));
      auto stream = dev_ctx->stream();
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
      memory::Copy(gpu_.place_, dst, platform::CPUPlace(), src, gpu_.size_,
                   stream);
    }

    void ImmutableCPU() const {
      if (IsDirty() && !IsInCPU()) {  // If data has been changed in CUDA, or
                                      // CPU has no data.
        CopyToCPU();
        UnsetFlag(kDirty);
      }
      SetFlag(kDataInCPU);
    }

    void UnsetFlag(int flag) const { flag_ &= ~flag; }
    void SetFlag(int flag) const { flag_ |= flag; }

    bool IsDirty() const { return flag_ & kDirty; }

    bool IsInCUDA() const { return flag_ & kDataInCUDA; }

    bool IsInCPU() const { return flag_ & kDataInCPU; }

    mutable std::vector<T> cpu_;
    mutable details::CUDABuffer gpu_;
    mutable int flag_;
Y
Yu Yang 已提交
334 335

    mutable std::mutex mtx_;
336 337 338 339 340 341 342 343 344 345 346 347
  };

 public:
  // Default ctor. Create empty Vector
  Vector() : m_(new VectorData()) {}

  // Fill vector with value. The vector size is `count`.
  explicit Vector(size_t count, const T &value = T())
      : m_(new VectorData(count, value)) {}

  // Ctor with init_list
  Vector(std::initializer_list<T> init) : m_(new VectorData(init)) {}
Y
Yu Yang 已提交
348

Y
Yu Yang 已提交
349
  // implicit cast from std::vector.
Y
Yu Yang 已提交
350
  template <typename U>
351
  Vector(const std::vector<U> &dat) : m_(new VectorData(dat)) {  // NOLINT
Y
Yu Yang 已提交
352 353
  }

Y
Yu Yang 已提交
354
  // Copy ctor
355
  Vector(const Vector<T> &other) { m_ = other.m_; }
Y
Yu Yang 已提交
356

Y
Yu Yang 已提交
357
  // Copy operator
358
  Vector<T> &operator=(const Vector<T> &other) {
359
    m_ = other.m_;
Y
Yu Yang 已提交
360 361 362
    return *this;
  }

Y
Yu Yang 已提交
363
  // Move ctor
364
  Vector(Vector<T> &&other) { m_ = std::move(other.m_); }
D
dzhwinter 已提交
365

Y
Yu Yang 已提交
366
  // CPU data access method. Mutable.
Y
Yu Yang 已提交
367
  T &operator[](size_t i) { return (*m_.MutableData())[i]; }
Y
Yu Yang 已提交
368

Y
Yu Yang 已提交
369
  // CPU data access method. Immutable.
Y
Yu Yang 已提交
370
  const T &operator[](size_t i) const { return m_.Data()[i]; }
Y
Yu Yang 已提交
371

Y
Yu Yang 已提交
372
  // std::vector iterator methods. Based on CPU data access method
Y
Yu Yang 已提交
373
  size_t size() const { return m_.Data().size(); }
Y
Yu Yang 已提交
374

Y
Yu Yang 已提交
375
  iterator begin() { return m_.MutableData()->begin(); }
Y
Yu Yang 已提交
376

Y
Yu Yang 已提交
377
  iterator end() { return m_.MutableData()->end(); }
Y
Yu Yang 已提交
378

Y
Yu Yang 已提交
379
  T &front() { return m_.MutableData()->front(); }
Y
Yu Yang 已提交
380

Y
Yu Yang 已提交
381
  T &back() { return m_.MutableData()->back(); }
Y
Yu Yang 已提交
382

Y
Yu Yang 已提交
383
  const_iterator begin() const { return m_.Data().begin(); }
Y
Yu Yang 已提交
384

Y
Yu Yang 已提交
385
  const_iterator end() const { return m_.Data().end(); }
386

387
  const_iterator cbegin() const { return begin(); }
Y
Yu Yang 已提交
388

389
  const_iterator cend() const { return end(); }
Y
Yu Yang 已提交
390

Y
Yu Yang 已提交
391
  const T &back() const { return m_.Data().back(); }
Y
Yu Yang 已提交
392

Y
Yu Yang 已提交
393
  T *data() { return m_.MutableData()->data(); }
Y
Yu Yang 已提交
394

Y
Yu Yang 已提交
395
  const T *data() const { return m_.Data().data(); }
Y
Yu Yang 已提交
396

Y
Yu Yang 已提交
397
  const T &front() const { return m_.Data().front(); }
Y
Yu Yang 已提交
398
  // end of std::vector iterator methods
Y
Yu Yang 已提交
399

Y
Yu Yang 已提交
400 401
  // assign this from iterator.
  // NOTE: the iterator must support `end-begin`
Y
Yu Yang 已提交
402 403
  template <typename Iter>
  void assign(Iter begin, Iter end) {
Y
Yu Yang 已提交
404
    m_.MutableData()->assign(begin, end);
Y
Yu Yang 已提交
405 406
  }

Y
Yu Yang 已提交
407 408
  // push_back. If the previous capacity is not enough, the memory will
  // double.
Y
Yu Yang 已提交
409
  void push_back(T elem) { m_.MutableData()->push_back(elem); }
D
dzhwinter 已提交
410

Y
Yu Yang 已提交
411 412 413 414
  // extend a vector by iterator.
  // NOTE: the iterator must support end-begin
  template <typename It>
  void Extend(It begin, It end) {
Y
Yu Yang 已提交
415
    m_.MutableData()->Extend(begin, end);
Y
Yu Yang 已提交
416 417 418
  }

  // resize the vector
C
refine  
chengduoZH 已提交
419
  void resize(size_t size) {
420
    if (m_.Data().size() != size) {
Y
Yu Yang 已提交
421
      m_.MutableData()->resize(size);
C
refine  
chengduoZH 已提交
422 423
    }
  }
D
dzhwinter 已提交
424

Y
Yu Yang 已提交
425
  // get cuda ptr. immutable
C
refine  
chengduoZH 已提交
426
  const T *CUDAData(platform::Place place) const {
Y
Yu Yang 已提交
427 428 429 430 431 432 433 434 435 436 437 438
    {
      auto &mtx = m_.Data().Mutex();
      std::lock_guard<std::mutex> guard(mtx);
      auto cuda_place = m_.Data().CUDAPlace();
      if (cuda_place == nullptr ||
          *cuda_place == boost::get<platform::CUDAPlace>(place)) {
        return m_.Data().CUDAData(place);
      }
    }
    // If m_ contains CUDAData in a different place. Detach manually.
    m_.Detach();
    return CUDAData(place);
C
refine  
chengduoZH 已提交
439
  }
D
dzhwinter 已提交
440

Y
Yu Yang 已提交
441
  // get cuda ptr. mutable
442
  T *CUDAMutableData(platform::Place place) {
Y
Yu Yang 已提交
443 444 445 446 447 448 449 450 451 452 453 454
    {
      auto &mtx = m_.Data().Mutex();
      std::lock_guard<std::mutex> guard(mtx);
      auto cuda_place = m_.Data().CUDAPlace();
      if (cuda_place == nullptr ||
          *cuda_place == boost::get<platform::CUDAPlace>(place)) {
        return m_.MutableData()->CUDAMutableData(place);
      }
    }
    // If m_ contains CUDAData in a different place. Detach manually.
    m_.Detach();
    return CUDAMutableData(place);
Y
Yu Yang 已提交
455 456
  }

Y
Yu Yang 已提交
457
  // clear
Y
Yu Yang 已提交
458
  void clear() { m_.MutableData()->clear(); }
Y
Yu Yang 已提交
459

Y
Yu Yang 已提交
460
  size_t capacity() const { return m_.Data().capacity(); }
Y
Yu Yang 已提交
461

Y
Yu Yang 已提交
462
  // reserve data
Y
Yu Yang 已提交
463
  void reserve(size_t size) { m_.Data().reserve(size); }
Y
Yu Yang 已提交
464

Y
Yu Yang 已提交
465
  // the unify method to access CPU or CUDA data. immutable.
466
  const T *Data(platform::Place place) const {
Y
Yu Yang 已提交
467 468 469
    if (platform::is_gpu_place(place)) {
      return CUDAData(place);
    } else {
470
      return data();
Y
Yu Yang 已提交
471 472 473
    }
  }

Y
Yu Yang 已提交
474
  // the unify method to access CPU or CUDA data. mutable.
475
  T *MutableData(platform::Place place) {
Y
Yu Yang 已提交
476 477
    if (platform::is_gpu_place(place)) {
      return CUDAMutableData(place);
478
    } else {
Y
Yu Yang 已提交
479
      return data();
480 481 482
    }
  }

Y
Yu Yang 已提交
483
  // implicit cast operator. Vector can be cast to std::vector implicitly.
Y
Yu Yang 已提交
484
  operator std::vector<T>() const { return m_.Data(); }
Y
Yu Yang 已提交
485

486
  bool operator==(const Vector<T> &other) const {
Y
Yu Yang 已提交
487
    if (size() != other.size()) return false;
488 489 490
    auto it1 = cbegin();
    auto it2 = other.cbegin();
    for (; it1 < cend(); ++it1, ++it2) {
Y
Yu Yang 已提交
491 492 493 494 495 496
      if (*it1 != *it2) {
        return false;
      }
    }
    return true;
  }
D
dzhwinter 已提交
497

498
  const void *Handle() const { return &m_.Data(); }
499

500 501
 private:
  // Vector is an COW object.
Y
Yu Yang 已提交
502
  mutable details::COWPtr<VectorData> m_;
Y
Yu Yang 已提交
503
};
D
dzhwinter 已提交
504

505 506 507 508 509 510
#else  // PADDLE_WITH_CUDA

template <typename T>
class CPUVector : public std::vector<T, std::allocator<T>> {
 public:
  CPUVector() : std::vector<T>() {}
511
  CPUVector(size_t count, const T &value = T())  // NOLINT
512 513
      : std::vector<T>(count, value) {}
  CPUVector(std::initializer_list<T> init) : std::vector<T>(init) {}
514 515
  CPUVector(const std::vector<T> &other) : std::vector<T>(other) {}  // NOLINT
  CPUVector(const CPUVector<T> &other) : std::vector<T>(other) {}
516
  CPUVector(CPUVector<T> &&other) : std::vector<T>(std::move(other)) {}
517
  CPUVector(std::vector<T> &&other)  // NOLINT
518
      : std::vector<T>(std::move(other)) {}
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
  CPUVector &operator=(const CPUVector &other) {
    this->assign(other.begin(), other.end());
    return *this;
  }
  CPUVector &operator=(const std::vector<T> &other) {
    this->assign(other.begin(), other.end());
    return *this;
  }

  friend std::ostream &operator<<(std::ostream &os, const CPUVector<T> &other) {
    std::stringstream ss;
    for (auto v : other) {
      os << v << " ";
    }
    return os;
  }

  T &operator[](size_t id) { return this->at(id); }

  const T &operator[](size_t id) const { return this->at(id); }

  template <typename D>
  void Extend(const D &begin, const D &end) {
    this->reserve(this->size() + size_t(end - begin));
    this->insert(this->end(), begin, end);
  }
};

template <typename T>
using Vector = CPUVector<T>;

#endif  // PADDLE_WITH_CUDA

};  // namespace framework
D
dzhwinter 已提交
553
}  // namespace paddle