pool_mkldnn_op.cc 15.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"
#include "paddle/phi/kernels/funcs/pooling.h"

namespace paddle {
namespace operators {

using dnnl::memory;
using dnnl::pooling_backward;
using dnnl::pooling_forward;
using dnnl::primitive;
using dnnl::reorder;
using dnnl::stream;
using framework::DataLayout;
using platform::to_void_cast;

template <typename T>
class PoolingMKLDNNHandler
    : public platform::MKLDNNHandlerNoCachingT<T,
                                               dnnl::pooling_forward,
                                               dnnl::pooling_backward> {
 public:
  PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
                       const dnnl::engine mkldnn_engine,
40 41
                       const phi::DenseTensor* input,
                       phi::DenseTensor* output)
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
      : platform::MKLDNNHandlerNoCachingT<T,
                                          dnnl::pooling_forward,
                                          dnnl::pooling_backward>(
            mkldnn_engine, ctx.GetPlace()) {
    const std::string pooling_type = ctx.Attr<std::string>("pooling_type");

    std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));

    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    const bool global_pooling = ctx.Attr<bool>("global_pooling");
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");

    // Only 2D pooling is supported now
    PADDLE_ENFORCE_EQ(
        ksize.size(),
        2,
        platform::errors::InvalidArgument(
            "The ksize must be 2D, i.e. 2D pooling, but received %dD.",
            ksize.size()));
    PADDLE_ENFORCE_EQ(
        pooling_type == "max" || pooling_type == "avg",
        true,
        platform::errors::InvalidArgument(
            "The pooling_type must be 'max' or 'avg', but received %s.",
            pooling_type));
    PADDLE_ENFORCE_EQ(
        input->dims().size(),
        4,
        platform::errors::InvalidArgument(
            "Input dim must be with 4, i.e. NCHW, but received %d.",
            input->dims().size()));

    const auto input_dims = input->dims();
    framework::DDim data_dims =
        phi::slice_ddim(input_dims, 2, input_dims.size());

    if (global_pooling) {
      phi::funcs::UpdateKernelSize(&ksize, data_dims);
    }

    phi::funcs::UpdatePadding(&paddings,
                              global_pooling,
                              0,
                              padding_algorithm,
                              data_dims,
                              strides,
                              ksize);

    const auto is_test = ctx.Attr<bool>("is_test");
    const bool ceil_mode = ctx.Attr<bool>("ceil_mode");
    const auto exclude_padding = ctx.Attr<bool>("exclusive");
    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);

    const auto dt = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(input->dtype()));
    const auto src_tz = phi::vectorize(input->dims());
    const auto dst_tz = phi::vectorize(output->dims());
    const auto dst_md =
        platform::MKLDNNMemDesc(dst_tz, dt, MKLDNNMemoryFormat::any);

    if (ceil_mode) {
      CorrectOutputSize(
          src_tz, dst_tz, ksize, paddings, strides, mkldnn_paddings[1]);
    }

    ComputeAdaptivePoolParameters(ctx, src_tz, &ksize, &strides);

    this->AcquireForwardPrimitiveDescriptor(
        is_test ? dnnl::prop_kind::forward_inference
                : dnnl::prop_kind::forward_training,
        pooling_type == "max"
            ? dnnl::algorithm::pooling_max
            : (exclude_padding ? dnnl::algorithm::pooling_avg_exclude_padding
                               : dnnl::algorithm::pooling_avg_include_padding),
        input->mem_desc(),
        dst_md,
        strides,
        ksize,
        mkldnn_paddings[0],
        mkldnn_paddings[1]);
  }

  PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
                       const dnnl::engine mkldnn_engine,
133 134 135
                       const phi::DenseTensor* in_x,
                       const phi::DenseTensor* out_grad,
                       phi::DenseTensor* in_x_grad)
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

      : platform::MKLDNNHandlerNoCachingT<T,
                                          dnnl::pooling_forward,
                                          dnnl::pooling_backward>(
            mkldnn_engine, ctx.GetPlace()) {
    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"),
        false,
        platform::errors::InvalidArgument(
            "is_test attribute should be set to False in training phase."));

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");

    std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));

    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    bool global_pooling = ctx.Attr<bool>("global_pooling");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");

    auto in_x_dims = in_x->dims();
    framework::DDim data_dims = phi::slice_ddim(in_x_dims, 2, in_x_dims.size());

    if (global_pooling) {
      phi::funcs::UpdateKernelSize(&ksize, data_dims);
    }

    phi::funcs::UpdatePadding(&paddings,
                              global_pooling,
                              0,
                              padding_algorithm,
                              data_dims,
                              strides,
                              ksize);

    auto src_tz = phi::vectorize<int64_t>(in_x->dims());
    auto diff_src_tz = phi::vectorize<int64_t>(in_x_grad->dims());
    auto diff_dst_tz = phi::vectorize<int64_t>(out_grad->dims());

    const auto dt = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(in_x->dtype()));
    auto dst_md = dnnl::memory::desc(diff_dst_tz, dt, MKLDNNMemoryFormat::any);
    auto diff_src_md = dnnl::memory::desc(
        diff_src_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::any);

    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
    const bool ceil_mode = ctx.Attr<bool>("ceil_mode");

    if (ceil_mode) {
      CorrectOutputSize(
          src_tz, diff_dst_tz, ksize, paddings, strides, mkldnn_paddings[1]);
    }
    ComputeAdaptivePoolParameters(ctx, diff_src_tz, &ksize, &strides);

    const auto exclude_padding = ctx.Attr<bool>("exclusive");

    this->AcquireForwardPrimitiveDescriptor(
        dnnl::prop_kind::forward_training,
        pooling_type == "max"
            ? dnnl::algorithm::pooling_max
            : (exclude_padding ? dnnl::algorithm::pooling_avg_exclude_padding
                               : dnnl::algorithm::pooling_avg_include_padding),
        in_x->mem_desc(),
        dst_md,
        strides,
        ksize,
        mkldnn_paddings[0],
        mkldnn_paddings[1]);

    this->AcquireBackwardPrimitiveDescriptor(
        pooling_type == "max"
            ? dnnl::algorithm::pooling_max
            : (exclude_padding ? dnnl::algorithm::pooling_avg_exclude_padding
                               : dnnl::algorithm::pooling_avg_include_padding),
        diff_src_md,
        out_grad->mem_desc(),
        strides,
        ksize,
        mkldnn_paddings[0],
        mkldnn_paddings[1]);
  }

  std::shared_ptr<dnnl::memory> AcquireWorkspaceMemory(
      const platform::MKLDNNDeviceContext& dev_ctx,
      const std::string& unique_name) {
    dnnl::memory::desc workspace_md = this->fwd_pd_->workspace_desc();
    // Pooling Workspace has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
    std::string workspace_key = platform::CreateKey(dev_ctx,
                                                    workspace_md.dims(),
                                                    workspace_md.data_type(),
                                                    unique_name,
                                                    "@wrk");
    auto mem_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(workspace_key));
    if (mem_p == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
      mem_p = std::static_pointer_cast<dnnl::memory>(
          dev_ctx.GetBlob(workspace_key));
      if (mem_p == nullptr) {
        mem_p = std::make_shared<dnnl::memory>(workspace_md, this->engine_);
        dev_ctx.SetBlob(workspace_key, mem_p);
      }
    }
    return mem_p;
  }

  static void ComputeAdaptivePoolParameters(
      const paddle::framework::ExecutionContext& ctx,
      const std::vector<int64_t>& src_tz,
      std::vector<int64_t>* ksize,
      std::vector<int64_t>* strides) {
    if (ctx.Attr<bool>("adaptive")) {
      // https://github.com/oneapi-src/oneDNN/tree/bkocot/adaptive-pooling/rfcs/20200818-adaptive-pooling
      auto IH = static_cast<double>(src_tz[src_tz.size() - 2]);
      auto IW = static_cast<double>(src_tz[src_tz.size() - 1]);
      auto OH = static_cast<double>(ksize->at(0));
      auto OW = static_cast<double>(ksize->at(1));

      strides->at(0) =
          static_cast<int64_t>(floor((IH * 2.0) / OH) - floor(IH / OH));
      strides->at(1) =
          static_cast<int64_t>(floor((IW * 2.0) / OW) - floor(IW / OW));
      ksize->at(0) =
          static_cast<int64_t>(ceil((IH * 2.0) / OH) - floor(IH / OH));
      ksize->at(1) =
          static_cast<int64_t>(ceil((IW * 2.0) / OW) - floor(IW / OW));
    }
  }

 private:
  static inline int ComputeCeiledOutput(int input_size,
                                        int kernel_size,
                                        int padding,
                                        int stride) {
    return (input_size - kernel_size + 2 * padding) / stride + 1;
  }

  static inline void CorrectOutputSize(
      const std::vector<int64_t>& src_tz,
      const std::vector<int64_t>& dst_tz,
      const std::vector<int64_t>& kernel_size,
      const std::vector<int64_t>& paddings,
      const std::vector<int64_t>& strides,
      std::vector<int64_t>& right_bot_padding) {  // NOLINT
    for (size_t i = 0; i < right_bot_padding.size(); i++) {
      int desired_size = ComputeCeiledOutput(
          src_tz[i + 2], kernel_size[i], paddings[i], strides[i]);
      if (desired_size != dst_tz[i + 2]) {
        right_bot_padding[i] += strides[i] - 1;
      }
    }
  }
};

template <typename T>
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()),
                      true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Pool must use CPUPlace"));
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

310 311
    const phi::DenseTensor* input = ctx.Input<phi::DenseTensor>("X");
    phi::DenseTensor* output = ctx.Output<phi::DenseTensor>("Out");
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

    PoolingMKLDNNHandler<T> handler(ctx, dev_ctx.GetEngine(), input, output);

    auto src_memory = handler.AcquireSrcMemory(input);
    auto dst_memory = handler.AcquireDstMemory(output);

    auto pool_p = handler.AcquireForwardPrimitive();

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    if ((ctx.Attr<bool>("is_test") == false) &&
        (ctx.Attr<std::string>("pooling_type") == "max")) {
      // Training
      auto workspace_memory =
          handler.AcquireWorkspaceMemory(dev_ctx, ctx.OutputName("Out"));
      pool_p->execute(astream,
                      {{DNNL_ARG_SRC, *src_memory},
                       {DNNL_ARG_DST, *dst_memory},
                       {DNNL_ARG_WORKSPACE, *workspace_memory}});
    } else {
      // Inference
      pool_p->execute(
          astream, {{DNNL_ARG_SRC, *src_memory}, {DNNL_ARG_DST, *dst_memory}});
    }
    astream.wait();

    output->set_mem_desc(dst_memory->get_desc());
  }
};

template <typename T>
class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()),
                      true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL PoolGrad must use CPUPlace"));
349 350 351 352 353
    const phi::DenseTensor* in_x = ctx.Input<phi::DenseTensor>("X");
    const phi::DenseTensor* out_grad =
        ctx.Input<phi::DenseTensor>(framework::GradVarName("Out"));
    phi::DenseTensor* in_x_grad =
        ctx.Output<phi::DenseTensor>(framework::GradVarName("X"));
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

    PoolingMKLDNNHandler<T> handler(
        ctx, dev_ctx.GetEngine(), in_x, out_grad, in_x_grad);

    auto diff_dst_memory = handler.AcquireDiffDstMemory(out_grad);
    auto diff_src_memory = handler.AcquireDiffSrcMemory(in_x_grad);

    auto pool_bwd_p = handler.AcquireBackwardPrimitive();

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    if (ctx.Attr<std::string>("pooling_type") == "max") {
      // Max - pooling needs Workspace
      auto workspace_memory =
          handler.AcquireWorkspaceMemory(dev_ctx, ctx.InputName("Out"));
      pool_bwd_p->execute(astream,
                          {{DNNL_ARG_DIFF_SRC, *diff_src_memory},
                           {DNNL_ARG_DIFF_DST, *diff_dst_memory},
                           {DNNL_ARG_WORKSPACE, *workspace_memory}});
    } else {
      // Average Pooling
      pool_bwd_p->execute(astream,
                          {{DNNL_ARG_DIFF_SRC, *diff_src_memory},
                           {DNNL_ARG_DIFF_DST, *diff_dst_memory}});
    }
    astream.wait();

    in_x_grad->set_mem_desc(diff_src_memory->get_desc());
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(pool2d,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
                   ops::PoolMKLDNNOpKernel<float>,
                   ops::PoolMKLDNNOpKernel<int8_t>,
                   ops::PoolMKLDNNOpKernel<uint8_t>,
                   ops::PoolMKLDNNOpKernel<paddle::platform::bfloat16>);

REGISTER_OP_KERNEL(pool2d_grad,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
                   ops::PoolMKLDNNGradOpKernel<float>,
                   ops::PoolMKLDNNGradOpKernel<paddle::platform::bfloat16>);