test_imperative_basic.py 15.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import contextlib
16 17 18 19 20
import unittest
import numpy as np

import paddle.fluid as fluid
from paddle.fluid import core
21
from paddle.fluid import FC
M
minqiyang 已提交
22
from test_imperative_base import new_program_scope
23 24


25
class MyLayer(fluid.Layer):
X
Xin Pan 已提交
26 27
    def __init__(self, name_scope):
        super(MyLayer, self).__init__(name_scope)
28 29

    def forward(self, inputs):
M
minqiyang 已提交
30
        x = fluid.layers.relu(inputs)
31
        self._x_for_debug = x
X
Xin Pan 已提交
32 33 34
        x = fluid.layers.elementwise_mul(x, x)
        x = fluid.layers.reduce_sum(x)
        return [x]
35 36


37
class MyPyLayer(fluid.PyLayer):
X
Xin Pan 已提交
38 39 40 41 42
    def __init__(self):
        super(MyPyLayer, self).__init__()

    @staticmethod
    def forward(inputs):
X
Xin Pan 已提交
43
        return np.tanh(inputs[0])
X
Xin Pan 已提交
44 45

    @staticmethod
X
Xin Pan 已提交
46 47
    def backward(inputs):
        inp, out, dout = inputs
X
Xin Pan 已提交
48
        return np.array(dout) * (1 - np.square(np.array(out)))
X
Xin Pan 已提交
49 50


51
class MLP(fluid.Layer):
X
Xin Pan 已提交
52 53 54 55
    def __init__(self, name_scope):
        super(MLP, self).__init__(name_scope)
        self._fc1 = FC(self.full_name(),
                       3,
56 57 58
                       param_attr=fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)),
                       bias_attr=fluid.ParamAttr(
X
Xin Pan 已提交
59
                           initializer=fluid.initializer.Constant(value=0.1)))
X
Xin Pan 已提交
60 61
        self._fc2 = FC(self.full_name(),
                       4,
62 63 64
                       param_attr=fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)),
                       bias_attr=fluid.ParamAttr(
X
Xin Pan 已提交
65 66 67
                           initializer=fluid.initializer.Constant(value=0.1)))

    def forward(self, inputs):
M
minqiyang 已提交
68
        x = self._fc1(inputs)
X
Xin Pan 已提交
69 70 71 72 73
        x = self._fc2(x)
        x = fluid.layers.reduce_sum(x)
        return x


74
class SimpleRNNCell(fluid.Layer):
X
Xin Pan 已提交
75 76 77
    def __init__(self, name_scope, step_input_size, hidden_size, output_size,
                 param_attr):
        super(SimpleRNNCell, self).__init__(name_scope)
78 79 80
        self.step_input_size = step_input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
81 82
        self._dtype = core.VarDesc.VarType.FP32
        self.param_attr = param_attr
83 84 85 86 87

    def _build_once(self, inputs, pre_hidden):
        i2h_param_shape = [self.step_input_size, self.hidden_size]
        h2h_param_shape = [self.hidden_size, self.hidden_size]
        h2o_param_shape = [self.output_size, self.hidden_size]
88 89
        self._i2h_w = self.create_parameter(
            attr=self.param_attr,
90 91 92
            shape=i2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
93 94
        self._h2h_w = self.create_parameter(
            attr=self.param_attr,
95 96 97
            shape=h2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
98 99
        self._h2o_w = self.create_parameter(
            attr=self.param_attr,
100 101 102 103 104 105
            shape=h2o_param_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input, pre_hidden):

106 107 108 109 110 111
        tmp_i2h = self.create_variable(dtype=self._dtype)
        tmp_h2h = self.create_variable(dtype=self._dtype)
        hidden = self.create_variable(dtype=self._dtype)
        out = self.create_variable(dtype=self._dtype)
        softmax_out = self.create_variable(dtype=self._dtype)
        reduce_out = self.create_variable(dtype=self._dtype)
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._i2h_w},
            outputs={"Out": tmp_i2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="mul",
            inputs={"X": pre_hidden,
                    "Y": self._h2h_w},
            outputs={"Out": tmp_h2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="elementwise_add",
            inputs={'X': tmp_h2h,
                    'Y': tmp_i2h},
            outputs={'Out': hidden},
            attrs={'axis': -1,
                   'use_mkldnn': False})
135
        hidden = self._helper.append_activation(hidden, act='tanh')
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

        self._helper.append_op(
            type="mul",
            inputs={"X": hidden,
                    "Y": self._h2o_w},
            outputs={"Out": out},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="softmax",
            inputs={"X": out},
            outputs={"Out": softmax_out},
            attrs={"use_cudnn": False})

        self._helper.append_op(
            type='reduce_sum',
            inputs={'X': softmax_out},
            outputs={'Out': reduce_out},
155
            attrs={'dim': [],
156 157 158 159 160 161
                   'keep_dim': False,
                   'reduce_all': True})

        return reduce_out, hidden


162
class SimpleRNN(fluid.Layer):
X
Xin Pan 已提交
163 164
    def __init__(self, name_scope):
        super(SimpleRNN, self).__init__(name_scope)
J
JiabinYang 已提交
165 166
        self.seq_len = 4
        self._cell = SimpleRNNCell(
X
Xin Pan 已提交
167
            self.full_name(),
J
JiabinYang 已提交
168 169 170 171
            3,
            3,
            3,
            fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.1)))
J
JiabinYang 已提交
172 173

    def forward(self, inputs):
J
JiabinYang 已提交
174
        outs = list()
J
JiabinYang 已提交
175 176
        pre_hiddens = list()

177
        init_hidden = self.create_parameter(
J
JiabinYang 已提交
178 179 180 181 182 183
            attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            shape=[1, 3],
            dtype='float32',
            is_bias=False)
        pre_hidden = init_hidden
J
JiabinYang 已提交
184
        for i in range(self.seq_len):
J
JiabinYang 已提交
185 186 187
            input = fluid.layers.slice(
                inputs, axes=[1], starts=[i], ends=[i + 1])
            input = fluid.layers.reshape(input, shape=[1, 3])
J
JiabinYang 已提交
188 189
            out_softmax, pre_hidden = self._cell(input, pre_hidden)
            outs.append(out_softmax)
J
JiabinYang 已提交
190

J
JiabinYang 已提交
191
        return outs, pre_hiddens
J
JiabinYang 已提交
192 193


M
minqiyang 已提交
194 195 196
class TestImperative(unittest.TestCase):
    def test_sum_op(self):
        x = np.ones([2, 2], np.float32)
L
lujun 已提交
197
        with fluid.dygraph.guard():
M
minqiyang 已提交
198 199
            inputs = []
            for _ in range(10):
L
lujun 已提交
200
                inputs.append(fluid.dygraph.base.to_variable(x))
M
minqiyang 已提交
201 202
            ret = fluid.layers.sums(inputs)
            loss = fluid.layers.reduce_sum(ret)
L
lujun 已提交
203
            loss.backward()
204 205
            self.assertTrue(np.allclose(ret.numpy(), x * 10))
            self.assertTrue(np.allclose(inputs[0].gradient(), x))
M
minqiyang 已提交
206 207

    def test_layer(self):
L
lujun 已提交
208
        with fluid.dygraph.guard():
M
minqiyang 已提交
209 210
            cl = core.Layer()
            cl.forward([])
211
            l = fluid.Layer("l")
M
minqiyang 已提交
212 213
            self.assertRaises(NotImplementedError, l.forward, [])

M
minqiyang 已提交
214
    def test_pylayer_func_id(self):
M
minqiyang 已提交
215

L
lujun 已提交
216
        with fluid.dygraph.guard():
M
minqiyang 已提交
217

218
            class PyLayer1(fluid.PyLayer):
M
minqiyang 已提交
219 220 221 222 223 224 225 226 227 228 229
                def __init__(self):
                    super(PyLayer1, self).__init__()

                @staticmethod
                def forward(input):
                    return input

                @staticmethod
                def backward(input):
                    return input

230
            class PyLayer2(fluid.PyLayer):
M
minqiyang 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243
                def __init__(self):
                    super(PyLayer2, self).__init__()

                @staticmethod
                def forward(input):
                    return input

                @staticmethod
                def backward(input):
                    return input

            py_layer_1 = PyLayer1()
            py_layer_2 = PyLayer2()
L
lujun 已提交
244 245
            py_layer_1(fluid.dygraph.base.to_variable(np.ones([2, 2])))
            py_layer_2(fluid.dygraph.base.to_variable(np.ones([2, 2])))
M
minqiyang 已提交
246 247 248 249 250
            id = py_layer_1.forward_id
            self.assertGreater(id, 0)
            self.assertEqual(py_layer_1.backward_id, id + 1)
            self.assertEqual(py_layer_2.forward_id, id + 2)
            self.assertEqual(py_layer_2.backward_id, id + 3)
L
lujun 已提交
251
            py_layer_1(fluid.dygraph.base.to_variable(np.ones([2, 2])))
M
minqiyang 已提交
252 253 254 255
            self.assertEqual(py_layer_1.forward_id, id)

    def test_pylayer(self):
        np_inp = np.ones([2, 2], np.float32)
L
lujun 已提交
256
        with fluid.dygraph.guard():
M
minqiyang 已提交
257
            my_py_layer = MyPyLayer()
L
lujun 已提交
258
            var_inp = fluid.dygraph.base.to_variable(np_inp)
M
minqiyang 已提交
259
            outs = my_py_layer(var_inp)
260
            dy_out = np.sum(outs[0].numpy())
L
lujun 已提交
261
            outs[0].backward()
262
            dy_grad = var_inp.gradient()
M
minqiyang 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            # TODO(panyx0718): Paddle doesn't diff against data `inp`.
            x1 = inp * 1
            # TODO(panyx0718): If reduce_sum is skipped, the result is wrong.
            x = fluid.layers.reduce_sum(fluid.layers.tanh(x1))
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[x1.name])[0]
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
J
JiabinYang 已提交
282

M
minqiyang 已提交
283 284
    def test_layer_in_out(self):
        np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
L
lujun 已提交
285 286
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
M
minqiyang 已提交
287 288 289
            l = MyLayer("my_layer")
            x = l(var_inp)[0]
            self.assertIsNotNone(x)
290
            dy_out = x.numpy()
L
lujun 已提交
291
            x.backward()
292
            dy_grad = l._x_for_debug.gradient()
M
minqiyang 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[3], append_batch_size=False)
            l = MyLayer("my_layer")
            x = l(inp)[0]
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[l._x_for_debug.name])[0]
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))

    def test_mlp(self):
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
L
lujun 已提交
313 314
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
M
minqiyang 已提交
315 316
            mlp = MLP("mlp")
            out = mlp(var_inp)
317
            dy_out = out.numpy()
L
lujun 已提交
318
            out.backward()
319
            dy_grad = mlp._fc1._w.gradient()
M
minqiyang 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            mlp = MLP("mlp")
            out = mlp(inp)
            param_grads = fluid.backward.append_backward(
                out, parameter_list=[mlp._fc1._w.name])[0]
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            exe.run(fluid.default_startup_program())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[out.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))

        params = mlp.parameters(True)
340 341 342 343
        self.assertEqual("mlp/MLP_0/FC_0.w_0", params[0].name)
        self.assertEqual("mlp/MLP_0/FC_0.b_0", params[1].name)
        self.assertEqual("mlp/MLP_0/FC_1.w_0", params[2].name)
        self.assertEqual("mlp/MLP_0/FC_1.b_0", params[3].name)
M
minqiyang 已提交
344 345 346 347 348 349 350
        self.assertEqual(len(params), 4)

        sublayers = mlp.sublayers(True)
        self.assertEqual(mlp._fc1, sublayers[0])
        self.assertEqual(mlp._fc2, sublayers[1])
        self.assertEqual(len(sublayers), 2)

X
Xin Pan 已提交
351 352 353 354 355 356 357 358 359 360
    def test_dygraph_vs_static(self):
        inp1 = np.random.rand(4, 3, 3)
        inp2 = np.random.rand(4, 3, 3)

        # dynamic graph
        with fluid.dygraph.guard():
            if np.sum(inp1) < np.sum(inp2):
                x = fluid.layers.elementwise_add(inp1, inp2)
            else:
                x = fluid.layers.elementwise_sub(inp1, inp2)
L
lujun 已提交
361
            dygraph_result = x.numpy()
X
Xin Pan 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

        # static graph
        with new_program_scope():
            inp_data1 = fluid.layers.data(
                name='inp1', shape=[3, 3], dtype=np.float32)
            inp_data2 = fluid.layers.data(
                name='inp2', shape=[3, 3], dtype=np.float32)

            a = fluid.layers.expand(
                fluid.layers.reshape(
                    fluid.layers.reduce_sum(inp_data1), [1, 1]), [4, 1])
            b = fluid.layers.expand(
                fluid.layers.reshape(
                    fluid.layers.reduce_sum(inp_data2), [1, 1]), [4, 1])
            cond = fluid.layers.less_than(x=a, y=b)

            ie = fluid.layers.IfElse(cond)
            with ie.true_block():
                d1 = ie.input(inp_data1)
                d2 = ie.input(inp_data2)
                d3 = fluid.layers.elementwise_add(d1, d2)
                ie.output(d3)

            with ie.false_block():
                d1 = ie.input(inp_data1)
                d2 = ie.input(inp_data2)
                d3 = fluid.layers.elementwise_sub(d1, d2)
                ie.output(d3)
            out = ie()

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            static_result = exe.run(fluid.default_main_program(),
                                    feed={'inp1': inp1,
                                          'inp2': inp2},
                                    fetch_list=out)[0]
        self.assertTrue(np.allclose(dygraph_result, static_result))

M
minqiyang 已提交
400 401 402 403 404
    def test_rnn(self):
        np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
                           [10.0, 11.0, 12.0]])
        np_inp = np_inp.reshape((1, 4, 3))
        np_inp = np_inp.astype(np.float32)
L
lujun 已提交
405 406
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
M
minqiyang 已提交
407 408 409
            var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
            simple_rnn = SimpleRNN("simple_rnn")
            outs, pre_hiddens = simple_rnn.forward(var_inp)
410
            dy_out = outs[3].numpy()
L
lujun 已提交
411
            outs[3].backward()
412 413 414
            dy_grad_h2o = simple_rnn._cell._h2o_w.gradient()
            dy_grad_h2h = simple_rnn._cell._h2h_w.gradient()
            dy_grad_i2h = simple_rnn._cell._i2h_w.gradient()
M
minqiyang 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[1, 4, 3], append_batch_size=False)
            simple_rnn = SimpleRNN("simple_rnn")
            outs, pre_hiddens = simple_rnn(inp)
            param_grads = fluid.backward.append_backward(outs[3])
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[
                    outs[3].name, param_grads[0][1].name,
                    param_grads[1][1].name, param_grads[2][1].name
                ])
        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))

435 436 437

if __name__ == '__main__':
    unittest.main()