conv_op_npu.cc 25.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/conv_op.h"
16
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
17 18 19 20 21

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
22
using NPUDeviceContext = platform::NPUDeviceContext;
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
static void CastToFP16(const framework::ExecutionContext& ctx,
                       const aclrtStream& stream, const Tensor& in,
                       Tensor* out) {
  out->mutable_data<paddle::platform::float16>(ctx.GetPlace());
  NpuOpRunner runner;
  runner.SetType("Cast")
      .AddInput(in)
      .AddOutput(*out)
      .AddAttr("dst_type", ACL_FLOAT16)
      .Run(stream);
}

static void CastToFP32(const framework::ExecutionContext& ctx,
                       const aclrtStream& stream, const Tensor& in,
                       Tensor* out) {
  out->mutable_data<float>(ctx.GetPlace());
  NpuOpRunner runner;
  runner.SetType("Cast")
      .AddInput(in)
      .AddOutput(*out)
      .AddAttr("dst_type", ACL_FLOAT)
      .Run(stream);
}
46

47
template <typename T>
48 49
class DepthwiseConvNPUKernel : public framework::OpKernel<T> {
 public:
50 51 52 53 54
  void Compute(const framework::ExecutionContext& ctx) const override {
    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    Tensor* output = ctx.Output<Tensor>("Output");
    output->mutable_data<T>(ctx.GetPlace());
55

56 57 58 59 60 61
    const std::vector<int> stride = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> padding = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilation = ctx.Attr<std::vector<int>>("dilations");
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

    const bool channel_last = data_format == "NHWC";
    if (channel_last) {
      PADDLE_ENFORCE_EQ(
          output->dims()[output->dims().size() - 1],
          input->dims()[input->dims().size() - 1],
          platform::errors::InvalidArgument(
              "ShapeError: The output channels must be equal to the "
              "input channels. But receivced output channel number is %d "
              "and input channel number is %d",
              output->dims()[output->dims().size() - 1],
              input->dims()[input->dims().size() - 1]));
    } else {
      PADDLE_ENFORCE_EQ(
          output->dims()[1], input->dims()[1],
          platform::errors::InvalidArgument(
              "ShapeError: The output channels must be equal to the "
              "input channels. But receivced output channel number is %d "
              "and input channel number is %d",
              output->dims()[1], input->dims()[1]));
    }

    auto in_dims = input->dims();
    auto filter_dims = filter->dims();
    framework::DDim in_data_dims;
    framework::DDim filter_data_dims;

    if (channel_last) {
90
      in_data_dims = phi::slice_ddim(in_dims, 1, in_dims.size() - 1);
91
    } else {
92
      in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
93
    }
94
    filter_data_dims = phi::slice_ddim(filter_dims, 2, in_dims.size());
95

96
    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    UpdatePaddingAndDilation(&padding, &dilation, padding_algorithm,
                             in_data_dims, stride, ksize);

    std::vector<int> strides(4, 1);
    std::vector<int> dilations(4, 1);

    Tensor input_tensor, output_tensor;
    input_tensor.ShareDataWith(*input);
    output_tensor.ShareDataWith(*output);

    if (channel_last) {
      input_tensor.set_layout(DataLayout::kNHWC);
      output_tensor.set_layout(DataLayout::kNHWC);
      strides[1] = stride[0];
      strides[2] = stride[1];
      dilations[1] = dilation[0];
      dilations[2] = dilation[1];
    } else {
      strides[2] = stride[0];
      strides[3] = stride[1];
      dilations[2] = dilation[0];
      dilations[3] = dilation[1];
    }

121 122 123 124 125 126 127 128 129 130 131 132
    auto stream = ctx.template device_context<NPUDeviceContext>().stream();

    // Transform filter (n, 1, h, w) --> (1, n, h, w)
    Tensor transformed_filter(filter->type());
    transformed_filter.mutable_data<T>({filter->dims()[1], filter->dims()[0],
                                        filter->dims()[2], filter->dims()[3]},
                                       ctx.device_context().GetPlace());
    std::vector<int> perm = {1, 0, 2, 3};
    const auto& runner_trans = NpuOpRunner(
        "TransposeD", {*filter}, {transformed_filter}, {{"perm", perm}});
    runner_trans.Run(stream);

133 134 135 136 137 138 139 140 141 142
    const auto& runner =
        NpuOpRunner("DepthwiseConv2D", {input_tensor, transformed_filter},
                    {output_tensor}, {{"strides", strides},
                                      {"dilations", dilations},
                                      {"pads", padding},
                                      {"data_format", data_format}});
    runner.Run(stream);
  }
};

143 144 145
template <typename T>
class DepthwiseConvGradNPUKernel : public framework::OpKernel<T> {
 public:
146 147 148 149 150 151
  void Compute(const framework::ExecutionContext& ctx) const override {
    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
152

153 154 155 156 157 158
    const std::vector<int> stride = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> padding = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilation = ctx.Attr<std::vector<int>>("dilations");
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
159 160 161 162 163 164 165 166 167 168

    const bool channel_last = data_format == "NHWC";

    // update padding and dilation
    auto in_dims = input->dims();
    auto filter_dims = filter->dims();
    framework::DDim in_data_dims;
    framework::DDim filter_data_dims;

    if (channel_last) {
169
      in_data_dims = phi::slice_ddim(in_dims, 1, in_dims.size() - 1);
170
    } else {
171
      in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
172
    }
173
    filter_data_dims = phi::slice_ddim(filter_dims, 2, in_dims.size());
174

175
    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
176 177 178
    UpdatePaddingAndDilation(&padding, &dilation, padding_algorithm,
                             in_data_dims, stride, ksize);

179 180
    auto stream = ctx.template device_context<NPUDeviceContext>().stream();

181 182 183 184
    // Transform filter (n, 1, h, w) --> (1, n, h, w)
    Tensor transformed_filter(filter->type());
    transformed_filter.mutable_data<T>({filter->dims()[1], filter->dims()[0],
                                        filter->dims()[2], filter->dims()[3]},
185
                                       ctx.device_context().GetPlace());
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    std::vector<int> perm = {1, 0, 2, 3};
    const auto& runner_trans = NpuOpRunner(
        "TransposeD", {*filter}, {transformed_filter}, {{"perm", perm}});
    runner_trans.Run(stream);

    // construct NPU attr
    std::vector<int> strides(4, 1);
    std::vector<int> dilations(4, 1);

    Tensor input_tensor, output_grad_tensor;
    input_tensor.ShareDataWith(*input);
    output_grad_tensor.ShareDataWith(*output_grad);
    if (channel_last) {
      input_tensor.set_layout(DataLayout::kNHWC);
      output_grad_tensor.set_layout(DataLayout::kNHWC);
      strides[1] = stride[0];
      strides[2] = stride[1];
      dilations[1] = dilation[0];
      dilations[2] = dilation[1];
    } else {
      strides[2] = stride[0];
      strides[3] = stride[1];
      dilations[2] = dilation[0];
      dilations[3] = dilation[1];
    }

    if (filter_grad) {
213
      filter_grad->mutable_data<T>(ctx.GetPlace());
214

215 216 217 218 219 220 221 222 223 224 225 226
      PADDLE_ENFORCE_EQ(
          (dilations[2] == 1 && dilations[3] == 1), true,
          platform::errors::InvalidArgument(
              "dilation_h and dilation_w in DepthwiseConv2DBackpropFilterD "
              "must be equal to 1, but got dilation_h %d, dilation_w %d",
              dilation[2], dilation[3]));

      NpuOpRunner runner;
      runner.SetType("DepthwiseConv2DBackpropFilterD")
          .AddInput(input_tensor)
          .AddInput(output_grad_tensor)
          .AddOutput(*filter_grad)
227
          .AddAttr("filter_size", phi::vectorize(transformed_filter.dims()))
228 229 230 231 232
          .AddAttr("strides", strides)
          .AddAttr("dilations", dilations)
          .AddAttr("pads", padding)
          .AddAttr("data_format", data_format)
          .Run(stream);
233 234
    }
    if (input_grad) {
235
      input_grad->mutable_data<T>(ctx.GetPlace());
236 237 238 239 240
      Tensor input_grad_tensor;
      input_grad_tensor.ShareDataWith(*input_grad);
      if (channel_last) {
        input_grad_tensor.set_layout(DataLayout::kNHWC);
      }
241 242 243 244 245
      NpuOpRunner runner;
      runner.SetType("DepthwiseConv2DBackpropInputD")
          .AddInput(transformed_filter)
          .AddInput(output_grad_tensor)
          .AddOutput(input_grad_tensor)
246
          .AddAttr("input_size", phi::vectorize(input->dims()))
247 248 249 250 251
          .AddAttr("strides", strides)
          .AddAttr("dilations", dilations)
          .AddAttr("pads", padding)
          .AddAttr("data_format", data_format)
          .Run(stream);
252 253 254 255
    }
  }
};

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
template <typename T>
class NPUConvOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const Tensor* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");
    output->mutable_data<T>(ctx.GetPlace());
    const std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");

    const bool channel_last = data_format == "NHWC";

    // update padding and dilation
    auto in_dims = input->dims();
    auto filter_dims = filter->dims();
    framework::DDim in_data_dims;
    framework::DDim filter_data_dims;

    if (channel_last) {
281
      in_data_dims = phi::slice_ddim(in_dims, 1, in_dims.size() - 1);
282
    } else {
283
      in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
284
    }
285
    filter_data_dims = phi::slice_ddim(filter_dims, 2, in_dims.size());
286

287
    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    std::vector<int> strides_vec(4, 1);
    std::vector<int> dilations_vec(4, 1);

    Tensor input_tensor, output_tensor;
    input_tensor.ShareDataWith(*input);
    output_tensor.ShareDataWith(*output);
    if (channel_last) {
      input_tensor.set_layout(DataLayout::kNHWC);
      output_tensor.set_layout(DataLayout::kNHWC);
      strides_vec[1] = strides[0];
      strides_vec[2] = strides[1];
      dilations_vec[1] = dilations[0];
      dilations_vec[2] = dilations[1];
    } else {
      strides_vec[2] = strides[0];
      strides_vec[3] = strides[1];
      dilations_vec[2] = dilations[0];
      dilations_vec[3] = dilations[1];
    }

311
    auto stream = ctx.template device_context<NPUDeviceContext>().stream();
312 313 314 315 316 317 318
    const auto& runner =
        NpuOpRunner("Conv2D", {input_tensor, *filter}, {output_tensor},
                    {{"strides", strides_vec},
                     {"pads", paddings},
                     {"dilations", dilations_vec},
                     {"groups", groups},
                     {"data_format", data_format}});
319
    runner.Run(stream);
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
  }
};

template <typename T>
class NPUConvGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    const std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");

    const bool channel_last = data_format == "NHWC";

    // update padding and dilation
    auto in_dims = input->dims();
    auto filter_dims = filter->dims();
    framework::DDim in_data_dims;
    framework::DDim filter_data_dims;

    if (channel_last) {
350
      in_data_dims = phi::slice_ddim(in_dims, 1, in_dims.size() - 1);
351
    } else {
352
      in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
353
    }
354
    filter_data_dims = phi::slice_ddim(filter_dims, 2, in_dims.size());
355

356
    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    std::vector<int> strides_vec(4, 1);
    std::vector<int> dilations_vec(4, 1);

    Tensor input_tensor, output_grad_tensor;
    input_tensor.ShareDataWith(*input);
    output_grad_tensor.ShareDataWith(*output_grad);
    if (channel_last) {
      input_tensor.set_layout(DataLayout::kNHWC);
      output_grad_tensor.set_layout(DataLayout::kNHWC);
      strides_vec[1] = strides[0];
      strides_vec[2] = strides[1];
      dilations_vec[1] = dilations[0];
      dilations_vec[2] = dilations[1];
    } else {
      strides_vec[2] = strides[0];
      strides_vec[3] = strides[1];
      dilations_vec[2] = dilations[0];
      dilations_vec[3] = dilations[1];
    }

380
    auto stream = ctx.template device_context<NPUDeviceContext>().stream();
381
    if (filter_grad) {
382
      filter_grad->mutable_data<T>(ctx.GetPlace());
383
      std::vector<int> filter_shape_vec = phi::vectorize<int>(filter->dims());
384

385 386 387 388 389 390 391 392 393 394
      Tensor filter_grad_fp32(experimental::DataType::FLOAT32);
      filter_grad_fp32.Resize(filter_grad->dims());

      if (framework::TransToProtoVarType(input->dtype()) ==
          framework::proto::VarType::FP16) {
        CastToFP32(ctx, stream, *filter_grad, &filter_grad_fp32);
      } else {
        filter_grad_fp32.ShareDataWith(*filter_grad);
      }

395 396
      const auto& runner = NpuOpRunner(
          "Conv2DBackpropFilterD", {input_tensor, output_grad_tensor},
397 398 399 400 401 402
          {filter_grad_fp32}, {{"filter_size", filter_shape_vec},
                               {"strides", strides_vec},
                               {"pads", paddings},
                               {"dilations", dilations_vec},
                               {"groups", groups},
                               {"data_format", data_format}});
403
      runner.Run(stream);
404 405 406 407 408

      if (framework::TransToProtoVarType(input->dtype()) ==
          framework::proto::VarType::FP16) {
        CastToFP16(ctx, stream, filter_grad_fp32, filter_grad);
      }
409 410 411
    }
    if (input_grad) {
      input_grad->mutable_data<T>(ctx.GetPlace());
412
      std::vector<int> input_shape_vec = phi::vectorize<int>(input->dims());
413 414 415 416 417 418 419 420 421 422 423 424 425 426

      Tensor input_grad_tensor;
      input_grad_tensor.ShareDataWith(*input_grad);
      if (channel_last) {
        input_grad_tensor.set_layout(DataLayout::kNHWC);
      }
      const auto& runner =
          NpuOpRunner("Conv2DBackpropInputD", {*filter, output_grad_tensor},
                      {input_grad_tensor}, {{"input_size", input_shape_vec},
                                            {"strides", strides_vec},
                                            {"pads", paddings},
                                            {"dilations", dilations_vec},
                                            {"groups", groups},
                                            {"data_format", data_format}});
427
      runner.Run(stream);
428 429 430
    }
  }
};
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628

template <typename T>
class NPUConv3dKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    Tensor* output = ctx.Output<Tensor>("Output");

    const std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");

    PADDLE_ENFORCE_EQ(data_format, "NCDHW",
                      platform::errors::Unimplemented(
                          "the data_format must be NCDHW in "
                          "the npu kernel of conv3d, but got data_format "
                          "= [%s]",
                          data_format));

    PADDLE_ENFORCE_EQ(groups, 1, platform::errors::Unimplemented(
                                     "the groups must be 1 in "
                                     "the npu kernel of conv3d, but got groups "
                                     "= [%d]",
                                     groups));

    output->mutable_data<T>(ctx.GetPlace());

    auto& dev_ctx = ctx.template device_context<NPUDeviceContext>();
    auto input_tensor =
        ctx.AllocateTmpTensor<T, NPUDeviceContext>(input->dims(), dev_ctx);
    auto filter_tensor =
        ctx.AllocateTmpTensor<T, NPUDeviceContext>(filter->dims(), dev_ctx);
    auto output_tensor =
        ctx.AllocateTmpTensor<T, NPUDeviceContext>(output->dims(), dev_ctx);

    input_tensor.ShareDataWith(*input);
    filter_tensor.ShareDataWith(*filter);
    output_tensor.ShareDataWith(*output);

    input_tensor.set_layout(DataLayout::kNCDHW);
    filter_tensor.set_layout(DataLayout::kNCDHW);
    output_tensor.set_layout(DataLayout::kNCDHW);

    // update padding and dilation
    auto in_dims = input->dims();
    auto filter_dims = filter->dims();
    framework::DDim in_data_dims;
    framework::DDim filter_data_dims;

    in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
    filter_data_dims = phi::slice_ddim(filter_dims, 2, in_dims.size());

    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    std::vector<int> strides_vec(5, 1);
    std::vector<int> dilations_vec(5, 1);

    strides_vec[2] = strides[0];
    strides_vec[3] = strides[1];
    strides_vec[4] = strides[2];
    dilations_vec[2] = dilations[0];
    dilations_vec[3] = dilations[1];
    dilations_vec[4] = dilations[2];

    auto stream = ctx.template device_context<NPUDeviceContext>().stream();
    const auto& runner =
        NpuOpRunner("Conv3D", {input_tensor, filter_tensor}, {output_tensor},
                    {{"strides", strides_vec},
                     {"pads", paddings},
                     {"dilations", dilations_vec},
                     {"groups", groups},
                     {"data_format", data_format}});
    runner.Run(stream);
  }
};

template <typename T>
class NPUConv3dGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    const std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");

    PADDLE_ENFORCE_EQ(data_format, "NCDHW",
                      platform::errors::Unimplemented(
                          "the data_format must be NCDHW in "
                          "the npu kernel of conv3d, but got data_format "
                          "= [%s]",
                          data_format));

    PADDLE_ENFORCE_EQ(groups, 1, platform::errors::Unimplemented(
                                     "the groups must be 1 in "
                                     "the npu kernel of conv3d, but got groups "
                                     "= [%d]",
                                     groups));

    auto& dev_ctx = ctx.template device_context<NPUDeviceContext>();
    auto input_tensor =
        ctx.AllocateTmpTensor<T, NPUDeviceContext>(input->dims(), dev_ctx);
    auto filter_tensor =
        ctx.AllocateTmpTensor<T, NPUDeviceContext>(filter->dims(), dev_ctx);
    auto output_grad_tensor = ctx.AllocateTmpTensor<T, NPUDeviceContext>(
        output_grad->dims(), dev_ctx);

    input_tensor.ShareDataWith(*input);
    filter_tensor.ShareDataWith(*filter);
    output_grad_tensor.ShareDataWith(*output_grad);

    input_tensor.set_layout(DataLayout::kNCDHW);
    filter_tensor.set_layout(DataLayout::kNCDHW);
    output_grad_tensor.set_layout(DataLayout::kNCDHW);

    // update padding and dilation
    auto in_dims = input->dims();
    auto filter_dims = filter->dims();
    framework::DDim in_data_dims;
    framework::DDim filter_data_dims;

    in_data_dims = phi::slice_ddim(in_dims, 1, in_dims.size() - 1);
    filter_data_dims = phi::slice_ddim(filter_dims, 2, in_dims.size());

    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    std::vector<int> strides_vec(5, 1);
    std::vector<int> dilations_vec(5, 1);

    strides_vec[2] = strides[0];
    strides_vec[3] = strides[1];
    strides_vec[4] = strides[2];
    dilations_vec[2] = dilations[0];
    dilations_vec[3] = dilations[1];
    dilations_vec[4] = dilations[2];

    auto stream = ctx.template device_context<NPUDeviceContext>().stream();

    if (filter_grad) {
      filter_grad->mutable_data<T>(ctx.GetPlace());
      std::vector<int> filter_shape_vec = phi::vectorize<int>(filter->dims());

      Tensor filter_grad_tensor = ctx.AllocateTmpTensor<T, NPUDeviceContext>(
          filter_grad->dims(), dev_ctx);
      filter_grad_tensor.ShareDataWith(*filter_grad);
      filter_grad_tensor.set_layout(DataLayout::kNCDHW);

      const auto& runner = NpuOpRunner(
          "Conv3DBackpropFilterD", {input_tensor, output_grad_tensor},
          {filter_grad_tensor}, {{"filter_size", filter_shape_vec},
                                 {"strides", strides_vec},
                                 {"pads", paddings},
                                 {"dilations", dilations_vec},
                                 {"groups", groups},
                                 {"data_format", data_format}});
      runner.Run(stream);
    }

    if (input_grad) {
      input_grad->mutable_data<T>(ctx.GetPlace());
      std::vector<int> input_shape_vec = phi::vectorize<int>(input->dims());

      Tensor input_grad_tensor = ctx.AllocateTmpTensor<T, NPUDeviceContext>(
          input_grad->dims(), dev_ctx);
      input_grad_tensor.ShareDataWith(*input_grad);
      input_grad_tensor.set_layout(DataLayout::kNCDHW);

      const auto& runner = NpuOpRunner(
          "Conv3DBackpropInputD", {filter_tensor, output_grad_tensor},
          {input_grad_tensor}, {{"input_size", input_shape_vec},
                                {"strides", strides_vec},
                                {"pads", paddings},
                                {"dilations", dilations_vec},
                                {"groups", groups},
                                {"data_format", data_format}});
      runner.Run(stream);
    }
  }
};

629 630 631 632
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
633 634 635 636 637 638 639 640
namespace plat = paddle::platform;

REGISTER_OP_NPU_KERNEL(depthwise_conv2d, ops::DepthwiseConvNPUKernel<float>,
                       ops::DepthwiseConvNPUKernel<plat::float16>);

REGISTER_OP_NPU_KERNEL(depthwise_conv2d_grad,
                       ops::DepthwiseConvGradNPUKernel<float>,
                       ops::DepthwiseConvGradNPUKernel<plat::float16>);
641

642
REGISTER_OP_NPU_KERNEL(conv2d, ops::NPUConvOpKernel<float>,
643 644
                       ops::NPUConvOpKernel<plat::float16>);

645
REGISTER_OP_NPU_KERNEL(conv2d_grad, ops::NPUConvGradOpKernel<float>,
646
                       ops::NPUConvGradOpKernel<plat::float16>);
647 648 649 650 651 652

REGISTER_OP_NPU_KERNEL(conv3d, ops::NPUConv3dKernel<float>,
                       ops::NPUConv3dKernel<plat::float16>);

REGISTER_OP_NPU_KERNEL(conv3d_grad, ops::NPUConv3dGradKernel<float>,
                       ops::NPUConv3dGradKernel<plat::float16>);