selected_rows_functor.cc 31.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/selected_rows_functor.h"
16

L
lidanqing 已提交
17 18 19 20
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/operators/mkldnn/axpy_handler.h"
#endif

21 22 23 24
namespace paddle {
namespace operators {
namespace math {
template <typename T>
Q
QI JUN 已提交
25 26
struct SelectedRowsAdd<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
27 28 29 30
                  const framework::SelectedRows& input1,
                  const framework::SelectedRows& input2,
                  framework::SelectedRows* output) {
    auto in1_height = input1.height();
31 32 33 34 35 36
    PADDLE_ENFORCE_EQ(
        in1_height, input2.height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height  = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2.height()));
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    output->set_height(in1_height);

    auto& in1_rows = input1.rows();
    auto& in2_rows = input2.rows();
    std::vector<int64_t> out_rows;
    out_rows.reserve(in1_rows.size() + in2_rows.size());

    // concat rows
    out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
    out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
    output->set_rows(out_rows);

    auto* out_value = output->mutable_value();
    auto& in1_value = input1.value();
    auto& in2_value = input2.value();

    auto in1_row_numel = in1_value.numel() / in1_rows.size();
54 55 56 57 58 59 60 61 62 63 64 65
    PADDLE_ENFORCE_EQ(
        in1_row_numel, in2_value.numel() / in2_rows.size(),
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, in2_value.numel() / in2_rows.size()));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, out_value->numel() / out_rows.size(),
        platform::errors::InvalidArgument(
            "The input and oupput width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, out_value->numel() / out_rows.size()));
66 67

    auto in1_place = input1.place();
68 69 70
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
71
    auto in2_place = input2.place();
72 73 74
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
75
    auto out_place = context.GetPlace();
76 77 78
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(out_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
79 80 81

    auto* out_data = out_value->data<T>();
    auto* in1_data = in1_value.data<T>();
82
    memory::Copy(out_place, out_data, in1_place, in1_data,
83 84 85
                 in1_value.numel() * sizeof(T));

    auto* in2_data = in2_value.data<T>();
86
    memory::Copy(out_place, out_data + in1_value.numel(), in2_place, in2_data,
87 88 89 90
                 in2_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
91 92
template struct SelectedRowsAdd<platform::CPUDeviceContext, float>;
template struct SelectedRowsAdd<platform::CPUDeviceContext, double>;
93 94

template <typename T>
Q
QI JUN 已提交
95 96
struct SelectedRowsAddTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
97 98 99 100 101
                  const framework::SelectedRows& input1,
                  const framework::Tensor& input2, framework::Tensor* output) {
    auto in1_height = input1.height();
    auto in2_dims = input2.dims();
    auto out_dims = output->dims();
102 103 104 105 106 107 108 109 110 111 112 113
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
    PADDLE_ENFORCE_EQ(
        in1_height, out_dims[0],
        platform::errors::InvalidArgument(
            "The input and output height must be equal."
            "But recieved input height = [%d], output height = [%d]",
            in1_height, out_dims[0]));
114 115 116 117 118

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
119 120 121 122 123 124 125 126 127 128 129 130
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2.numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2.numel() / in1_height));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, output->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The input and output width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, output->numel() / in1_height));
131

Q
QI JUN 已提交
132
    SetConstant<platform::CPUDeviceContext, T> functor;
133 134 135 136 137 138 139 140 141 142 143 144 145 146
    functor(context, output, 0.0);

    auto* in1_data = in1_value.data<T>();
    auto* out_data = output->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        out_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }

    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
    auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
Q
QI JUN 已提交
147
    out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen;
148 149 150
  }
};

Q
QI JUN 已提交
151 152
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, double>;
Q
QI JUN 已提交
153 154

template <typename T>
Q
QI JUN 已提交
155 156
struct SelectedRowsAddTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
Q
QI JUN 已提交
157 158 159 160
                  const framework::SelectedRows& input1,
                  const int64_t input2_offset,
                  framework::SelectedRows* input2) {
    auto in1_height = input1.height();
161 162 163 164 165 166
    PADDLE_ENFORCE_EQ(
        in1_height, input2->height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2->height()));
Q
QI JUN 已提交
167 168 169 170 171 172 173 174

    auto& in1_rows = input1.rows();
    auto& in2_rows = *(input2->mutable_rows());

    auto& in1_value = input1.value();
    auto* in2_value = input2->mutable_value();

    // concat rows
Y
Yu Yang 已提交
175
    in2_rows.Extend(in1_rows.begin(), in1_rows.end());
Q
QI JUN 已提交
176 177

    auto in1_place = input1.place();
178 179 180
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
Q
QI JUN 已提交
181
    auto in2_place = input2->place();
182 183 184
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
Q
QI JUN 已提交
185 186 187

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = in2_value->data<T>();
188
    memory::Copy(in2_place, in2_data + input2_offset, in1_place, in1_data,
Q
QI JUN 已提交
189 190 191 192
                 in1_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
193 194 195 196
template struct SelectedRowsAddTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int64_t>;
Q
QI JUN 已提交
197

M
minqiyang 已提交
198 199 200 201 202 203 204 205 206 207 208 209
template <typename T>
struct SelectedRowsSumTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<framework::SelectedRows*>& input1,
                  const std::vector<int64_t>& input2_offsets,
                  framework::SelectedRows* input2) {
    // Ensure all selected rows have the same height
    size_t size = 0u;
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      auto& in_rows = (*iter)->rows();
      size += in_rows.end() - in_rows.begin();
      auto in1_height = (*iter)->height();
210 211 212 213 214 215
      PADDLE_ENFORCE_EQ(in1_height, input2->height(),
                        platform::errors::InvalidArgument(
                            "The two inputs height must be equal."
                            "But recieved first input height = [%d], second "
                            "input height = [%d]",
                            in1_height, input2->height()));
M
minqiyang 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    }
    // concat rows
    std::vector<int64_t> in2_rows;
    in2_rows.reserve(in2_rows.size() + size);
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      const framework::Vector<int64_t>& in_rows = (*iter)->rows();
      in2_rows.insert(in2_rows.end(), in_rows.begin(), in_rows.end());
    }
    input2->set_rows(in2_rows);

    auto* in2_value = input2->mutable_value();
    auto* in2_data = in2_value->data<T>();
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
    size_t offset = 0u;
    for (size_t i = 0u; i != input1.size(); ++i) {
      auto& in_value = input1[i]->value();
      const auto* in_data = in_value.data<T>();
      offset += input2_offsets[i];
      blas.VCOPY(in_value.numel(), in_data, in2_data + offset);
    }
  }
};

template struct SelectedRowsSumTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsSumTo<platform::CPUDeviceContext, double>;

Q
QI JUN 已提交
242
template <typename T>
Q
QI JUN 已提交
243 244
struct SelectedRowsAddToTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
Q
QI JUN 已提交
245 246
                  const framework::SelectedRows& input1,
                  framework::Tensor* input2) {
Q
Qiao Longfei 已提交
247
    if (UNLIKELY(input1.rows().size() == 0)) {
248 249 250
      LOG(WARNING) << "input selected rows is empty!";
      return;
    }
Q
QI JUN 已提交
251 252
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
253 254 255 256 257 258
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
Q
QI JUN 已提交
259 260 261 262 263

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
264 265 266 267 268 269
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
Q
QI JUN 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }
  }
};

Q
QI JUN 已提交
283 284 285 286
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int64_t>;
287 288
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext,
                                        platform::bfloat16>;
289

T
typhoonzero 已提交
290 291 292 293 294 295 296 297
// This is a separated namespace for manipulate SelectedRows typed
// data. Like merge duplicated rows, adding two SelectedRows etc.
//
// Another group of functors is called "scatter updates", which means
// use SelectedRows to update a dense tensor with different Ops, like
// add or mul.
namespace scatter {

L
lidanqing 已提交
298
template <typename T>
299 300 301
typename std::enable_if<!std::is_integral<T>::value>::type elementwise_add_to(
    BlasT<platform::CPUDeviceContext, T>* blas, size_t data_len, const T* in,
    T* out) {
302
  blas->AXPY(data_len, T(1.f), in, out);
Q
Qiao Longfei 已提交
303 304
}

305 306 307 308
template <typename T>
typename std::enable_if<std::is_integral<T>::value>::type elementwise_add_to(
    BlasT<platform::CPUDeviceContext, T>* blas, size_t data_len, const T* in,
    T* out) {
T
Tao Luo 已提交
309
  for (size_t i = 0; i < data_len; i++) {
Q
Qiao Longfei 已提交
310 311
    out[i] += in[i];
  }
T
typhoonzero 已提交
312 313
}

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
template <typename T>
typename std::enable_if<std::is_same<T, platform::bfloat16>::value>::type
add_sparse_inputs(const std::vector<const framework::SelectedRows*>& inputs,
                  const std::unordered_map<int64_t, size_t>& rows_to_id,
                  int64_t input_width,
                  const platform::CPUDeviceContext& context, T* out_data) {
#ifndef PADDLE_WITH_MKLDNN
  auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
#endif
  for (auto* input : inputs) {
    if (input->rows().size() == 0) {
      continue;
    }
    auto* input_data = input->value().data<T>();
    auto& input_rows = input->rows();

#ifdef PADDLE_WITH_MKLDNN
    OneDNNAXPYHandler<T> axpy_handler(input_width, T(1.f));
    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
      axpy_handler(&input_data[i * input_width],
                   &out_data[out_i * input_width]);
    }
#else
    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
      elementwise_add_to<T>(&blas, static_cast<size_t>(input_width),
                            &input_data[i * input_width],
                            &out_data[out_i * input_width]);
    }
#endif
  }
}

template <typename T>
typename std::enable_if<!std::is_same<T, platform::bfloat16>::value>::type
add_sparse_inputs(const std::vector<const framework::SelectedRows*>& inputs,
                  const std::unordered_map<int64_t, size_t>& rows_to_id,
                  int64_t input_width,
                  const platform::CPUDeviceContext& context, T* out_data) {
  VLOG(4) << "[CPU] add_sparse_inputs <" << typeid(T).name();
  auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
  for (auto* input : inputs) {
    if (input->rows().size() == 0) {
      continue;
    }
    auto* input_data = input->value().data<T>();
    auto& input_rows = input->rows();

    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
      elementwise_add_to<T>(&blas, static_cast<size_t>(input_width),
                            &input_data[i * input_width],
                            &out_data[out_i * input_width]);
    }
  }
}

T
typhoonzero 已提交
372 373
template <typename T>
struct MergeAdd<platform::CPUDeviceContext, T> {
T
wip  
typhoonzero 已提交
374
  framework::SelectedRows operator()(const platform::CPUDeviceContext& context,
375 376
                                     const framework::SelectedRows& input,
                                     const bool sorted_result = false) {
T
wip  
typhoonzero 已提交
377
    framework::SelectedRows out;
378
    (*this)(context, input, &out, sorted_result);
S
sneaxiy 已提交
379 380 381 382 383
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::SelectedRows& input,
384 385
                  framework::SelectedRows* output,
                  const bool sorted_result = false) {
386 387
    std::vector<const framework::SelectedRows*> inputs;
    inputs.push_back(&input);
388
    (*this)(context, inputs, output, sorted_result);
389
  }
T
typhoonzero 已提交
390

391 392
  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<const framework::SelectedRows*>& inputs,
393 394
                  framework::SelectedRows* output,
                  const bool sorted_result = false) {
Q
Qiao Longfei 已提交
395
    if (inputs.size() == 0) {
M
minqiyang 已提交
396
      VLOG(3) << "no input! return";
Q
Qiao Longfei 已提交
397 398 399 400
      return;
    }
    const framework::SelectedRows* has_value_input = nullptr;
    for (auto* in : inputs) {
Q
Qiao Longfei 已提交
401
      if (in->rows().size() > 0) {
Q
Qiao Longfei 已提交
402 403 404 405 406
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
M
minqiyang 已提交
407
      VLOG(3) << "no input has value! just return" << std::endl;
Q
Qiao Longfei 已提交
408 409 410 411
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
412 413
    framework::SelectedRows& out = *output;
    std::set<int64_t> merged_row_set;
414
    size_t row_num = 0;
415
    for (auto* input : inputs) {
Q
Qiao Longfei 已提交
416
      if (input->rows().size() == 0) {
Q
Qiao Longfei 已提交
417 418
        continue;
      }
419
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
420 421 422
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
423
      PADDLE_ENFORCE_EQ(input_height, input->height(),
424 425
                        platform::errors::InvalidArgument(
                            "All inputs should have same height."));
426
      row_num += input->rows().size();
427 428
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }
429

430
    out.set_height(input_height);
T
wip  
typhoonzero 已提交
431
    out.mutable_value()->mutable_data<T>(
T
typhoonzero 已提交
432
        framework::make_ddim(
433
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
T
typhoonzero 已提交
434
        context.GetPlace());
435
    auto* out_data = out.mutable_value()->data<T>();
T
typhoonzero 已提交
436

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
    if (merged_row_set.size() == row_num && !sorted_result) {
      // no duplicated ids, just concat the result together
      std::vector<int64_t> merge_rows;
      merge_rows.reserve(row_num);
      // concat rows
      for (auto* in : inputs) {
        merge_rows.insert(merge_rows.end(), in->rows().begin(),
                          in->rows().end());
      }
      out.set_rows(merge_rows);
      auto in_place = inputs[0]->place();
      auto out_place = out.place();
      int64_t copied_numel = 0;
      for (auto* in : inputs) {
        auto* in_data = in->value().data<T>();
452
        auto in_numel = in->rows().size() * input_width;
453
        memory::Copy(out_place, out_data + copied_numel, in_place, in_data,
454 455 456 457 458 459
                     in_numel * sizeof(T));
        copied_numel += in_numel;
      }
    } else {
      std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                      merged_row_set.end());
T
typhoonzero 已提交
460

461 462 463
      if (sorted_result) {
        std::sort(merge_rows.begin(), merge_rows.end());
      }
T
typhoonzero 已提交
464

465 466 467
      out.set_rows(merge_rows);

      math::SetConstant<platform::CPUDeviceContext, T> constant_functor;
468
      constant_functor(context, out.mutable_value(), static_cast<T>(0.f));
469 470 471 472

      std::unordered_map<int64_t, size_t> rows_to_id;
      for (size_t i = 0; i < merge_rows.size(); ++i) {
        rows_to_id[merge_rows[i]] = i;
Q
Qiao Longfei 已提交
473
      }
474

475
      add_sparse_inputs<T>(inputs, rows_to_id, input_width, context, out_data);
T
typhoonzero 已提交
476
    }
T
wip  
typhoonzero 已提交
477 478 479
  }
};

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
#ifdef PADDLE_WITH_XPU
template <typename T>
struct MergeAdd<platform::XPUDeviceContext, T> {
  framework::SelectedRows operator()(const platform::XPUDeviceContext& context,
                                     const framework::SelectedRows& input,
                                     const bool sorted_result = false) {
    framework::SelectedRows out;
    (*this)(context, input, &out, sorted_result);
    return out;
  }

  void operator()(const platform::XPUDeviceContext& context,
                  const framework::SelectedRows& input,
                  framework::SelectedRows* output,
                  const bool sorted_result = false) {
    framework::Vector<int64_t> input_rows(input.rows());
    if (input_rows.size() == 0) {
      return;
    }

    framework::SelectedRows& out = *output;
    std::set<int64_t> row_set(input_rows.begin(), input_rows.end());
    std::vector<int64_t> merge_rows(row_set.begin(), row_set.end());
    auto input_width = input.value().dims()[1];

    out.set_rows(merge_rows);
    out.set_height(input.height());
    out.mutable_value()->mutable_data<T>(
        framework::make_ddim(
            {static_cast<int64_t>(merge_rows.size()), input_width}),
        context.GetPlace());
    int r =
        xpu::constant<T>(context.x_context(), out.mutable_value()->data<T>(),
                         merge_rows.size() * input_width, static_cast<T>(0.f));
    PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
                      platform::errors::External("XPU constant op return"
                                                 " wrong value[%d %s].",
                                                 r, XPUAPIErrorMsg[r]));

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

    auto* out_data = out.mutable_value()->data<T>();
    auto* input_data = input.value().data<T>();
    int n = input_width;
    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id[input_rows[i]];
      auto r = xpu::add(context.x_context(), &input_data[i * input_width],
                        &out_data[out_i * input_width],
                        &out_data[out_i * input_width], n);
      PADDLE_ENFORCE_EQ(
          r, XPU_SUCCESS,
          platform::errors::External("XPU API return wrong value[%d %s], ", r,
                                     XPUAPIErrorMsg[r]));
    }
  }

  void operator()(const platform::XPUDeviceContext& context,
                  const std::vector<const framework::SelectedRows*>& inputs,
                  framework::SelectedRows* output,
                  const bool sorted_result = false) {
    if (inputs.size() == 0) {
      VLOG(3) << "no input! return";
      return;
    }
    const framework::SelectedRows* has_value_input = nullptr;
    for (auto* in : inputs) {
      if (in->rows().size() > 0) {
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
      VLOG(3) << "no input has value! just return" << std::endl;
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
    framework::SelectedRows& out = *output;
    std::set<int64_t> merged_row_set;
    size_t row_num = 0;
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
      PADDLE_ENFORCE_EQ(input_height, input->height(),
                        platform::errors::InvalidArgument(
                            "All inputs should have same height."));
      row_num += input->rows().size();
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }

    std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                    merged_row_set.end());

    if (sorted_result) {
      std::sort(merge_rows.begin(), merge_rows.end());
    }

    out.set_rows(merge_rows);
    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
        framework::make_ddim(
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
        context.GetPlace());

    int r =
        xpu::constant<T>(context.x_context(), out.mutable_value()->data<T>(),
                         merge_rows.size() * input_width, static_cast<T>(0.f));
    PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
                      platform::errors::External("XPU constant op return"
                                                 " wrong value[%d %s].",
                                                 r, XPUAPIErrorMsg[r]));

    float* out_data = reinterpret_cast<float*>(out.mutable_value()->data<T>());

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      auto& input_rows = input->rows();

      int n = input_width;
      for (size_t i = 0; i < input_rows.size(); i++) {
        size_t out_i = rows_to_id[input_rows[i]];
        auto r = xpu::add(
            context.x_context(), input->value().data<T>() + i * input_width,
            &out_data[out_i * input_width], &out_data[out_i * input_width], n);
        PADDLE_ENFORCE_EQ(
            r, XPU_SUCCESS,
            platform::errors::External("XPU API return wrong value[%d %s], ", r,
                                       XPUAPIErrorMsg[r]));
      }
    }
  }
};

#endif
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
template <typename T>
struct MergeAverage<platform::CPUDeviceContext, T> {
  framework::SelectedRows operator()(const platform::CPUDeviceContext& context,
                                     const framework::SelectedRows& input) {
    framework::SelectedRows out;
    (*this)(context, input, &out);
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::SelectedRows& input,
                  framework::SelectedRows* output) {
    std::vector<const framework::SelectedRows*> inputs;
    inputs.push_back(&input);
    (*this)(context, inputs, output);
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<const framework::SelectedRows*>& inputs,
                  framework::SelectedRows* output) {
    if (inputs.size() == 0) {
      VLOG(3) << "no input! return";
      return;
    }
    const framework::SelectedRows* has_value_input = nullptr;
    for (auto* in : inputs) {
      if (in->rows().size() > 0) {
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
      VLOG(3) << "no input has value! just return" << std::endl;
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
    framework::SelectedRows& out = *output;
    std::set<int64_t> merged_row_set;
    size_t row_num = 0;
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
674 675 676
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
677
      PADDLE_ENFORCE_EQ(input_height, input->height(),
678 679
                        platform::errors::InvalidArgument(
                            "All input should have same height."));
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
      row_num += input->rows().size();
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }

    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
        framework::make_ddim(
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
        context.GetPlace());
    auto* out_data = out.mutable_value()->data<T>();

    std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                    merged_row_set.end());
    std::sort(merge_rows.begin(), merge_rows.end());

    out.set_rows(merge_rows);

    math::SetConstant<platform::CPUDeviceContext, T> constant_functor;
    constant_functor(context, out.mutable_value(), 0.0);

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      auto* input_data = input->value().data<T>();
      auto& input_rows = input->rows();

      for (size_t i = 0; i < input_rows.size(); i++) {
        size_t out_i = rows_to_id[input_rows[i]];
715 716 717
        elementwise_add_to<T>(&blas, static_cast<size_t>(input_width),
                              &input_data[i * input_width],
                              &out_data[out_i * input_width]);
718 719 720 721 722 723 724 725 726 727 728 729
      }
    }
    size_t input_width_cast = static_cast<size_t>(input_width);
    T count = static_cast<T>(inputs.size());
    for (size_t i = 0; i < merge_rows.size(); i++) {
      for (size_t j = 0; j < input_width_cast; j++) {
        out_data[i * input_width + j] = out_data[i * input_width + j] / count;
      }
    }
  }
};

T
wip  
typhoonzero 已提交
730 731
template struct MergeAdd<platform::CPUDeviceContext, int>;
template struct MergeAdd<platform::CPUDeviceContext, int64_t>;
Q
Qiao Longfei 已提交
732 733
template struct MergeAdd<platform::CPUDeviceContext, float>;
template struct MergeAdd<platform::CPUDeviceContext, double>;
734
template struct MergeAdd<platform::CPUDeviceContext,
735
                         paddle::platform::complex<float>>;
736
template struct MergeAdd<platform::CPUDeviceContext,
737
                         paddle::platform::complex<double>>;
738 739
template struct MergeAdd<platform::CPUDeviceContext,
                         paddle::platform::bfloat16>;
T
wip  
typhoonzero 已提交
740

741 742 743 744
#ifdef PADDLE_WITH_XPU
template struct MergeAdd<platform::XPUDeviceContext, float>;
#endif

745 746 747 748 749
template struct MergeAverage<platform::CPUDeviceContext, int>;
template struct MergeAverage<platform::CPUDeviceContext, int64_t>;
template struct MergeAverage<platform::CPUDeviceContext, float>;
template struct MergeAverage<platform::CPUDeviceContext, double>;

T
wip  
typhoonzero 已提交
750 751
template <typename T>
struct UpdateToTensor<platform::CPUDeviceContext, T> {
T
typhoonzero 已提交
752 753 754
  void operator()(const platform::CPUDeviceContext& context,
                  const ScatterOps& op, const framework::SelectedRows& input1,
                  framework::Tensor* input2) {
T
wip  
typhoonzero 已提交
755 756
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
757 758 759 760 761 762
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
T
wip  
typhoonzero 已提交
763 764 765 766 767

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
768 769 770 771 772 773
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
T
wip  
typhoonzero 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    // FIXME(typhoonzero): use macro fix the below messy code.
    switch (op) {
      case ScatterOps::ASSIGN:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::ADD:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUB:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] -=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUBBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] -
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
      case ScatterOps::MUL:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] *=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIV:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] /=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIVBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] /
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
    }
T
typhoonzero 已提交
818 819 820 821
  }
};

}  // namespace scatter
822 823 824
}  // namespace math
}  // namespace operators
}  // namespace paddle