sgd_op.h 12.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16

Y
Yi Wang 已提交
17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
20
#include "paddle/fluid/framework/var_type_traits.h"
21
#include "paddle/fluid/operators/jit/kernels.h"
22
#include "paddle/fluid/platform/bfloat16.h"
Q
Qiao Longfei 已提交
23 24 25 26

namespace paddle {
namespace operators {

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
namespace detail {

template <typename T, int VariableTypeId>
struct sgd_dense_param_kernel {
  void operator()() const {}
};

// LodTensor
template <typename T>
struct sgd_dense_param_kernel<
    T, framework::VarTypeTrait<framework::LoDTensor>::kId> {
  void operator()(const framework::ExecutionContext &ctx) const {
    VLOG(4) << "[CPU]: sgd_dense_param_kernel<T, LoDTensor>";
    const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");
    const auto *param = ctx.Input<framework::Tensor>("Param");
    auto *param_out = ctx.Output<framework::Tensor>("ParamOut");
    const auto *grad = ctx.Input<framework::Tensor>("Grad");

    const auto sz = param_out->numel();
    jit::sgd_attr_t attr(1, sz, 1, sz, 1);
    const T *lr = learning_rate->data<T>();
    const T *param_data = param->data<T>();
    const T *grad_data = grad->data<T>();
    int64_t rows_idx = 0;
    T *out_data = param_out->mutable_data<T>(ctx.GetPlace());

    auto sgd =
        jit::KernelFuncs<jit::SgdTuple<T>, platform::CPUPlace>::Cache().At(
            attr);
    sgd(lr, param_data, grad_data, &rows_idx, out_data, &attr);
  }
};

// SelectedRows
template <typename T>
struct sgd_dense_param_kernel<
    T, framework::VarTypeTrait<framework::SelectedRows>::kId> {
  void operator()(const framework::ExecutionContext &ctx) const {
    VLOG(4) << "[CPU]: sgd_dense_param_kernel<T, SelectedRows>";
    const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");
    const auto *param = ctx.Input<framework::Tensor>("Param");
    auto *param_out = ctx.Output<framework::Tensor>("ParamOut");
    const auto *grad = ctx.Input<framework::SelectedRows>("Grad");

    const auto &grad_value = grad->value();
    const auto &grad_rows = grad->rows();
    const T *param_data = param->data<T>();
    const T *grad_data = grad_value.data<T>();
    const T *lr = learning_rate->data<T>();
    const int64_t *rows_data = grad_rows.data();
    T *out_data = param_out->mutable_data<T>(ctx.GetPlace());

    jit::sgd_attr_t attr;
    attr.param_height = param_out->dims()[0];
    attr.param_width = param_out->numel() / attr.param_height;
    attr.grad_height = grad_rows.size();  // note: it is not grad->height()
    attr.grad_width = grad_value.numel() / attr.grad_height;
    attr.selected_rows_size = grad_rows.size();

    auto sgd =
        jit::KernelFuncs<jit::SgdTuple<T>, platform::CPUPlace>::Cache().At(
            attr);
    sgd(lr, param_data, grad_data, rows_data, out_data, &attr);
  }
};

// LodTensor
template <>
struct sgd_dense_param_kernel<
    platform::bfloat16, framework::VarTypeTrait<framework::LoDTensor>::kId> {
  void operator()(const framework::ExecutionContext &ctx) const {
    VLOG(4) << "[CPU]: sgd_dense_param_kernel<bfloat16, LoDTensor>";
    const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");
    const auto *param = ctx.Input<framework::Tensor>("Param");
    auto *param_out = ctx.Output<framework::Tensor>("ParamOut");
    const auto *grad = ctx.Input<framework::Tensor>("Grad");
    param_out->mutable_data<platform::bfloat16>(ctx.GetPlace());

    auto p = framework::EigenVector<platform::bfloat16>::Flatten(*param);
    auto g = framework::EigenVector<platform::bfloat16>::Flatten(*grad);
    auto o = framework::EigenVector<platform::bfloat16>::Flatten(*param_out);
    const auto *lr = learning_rate->data<platform::bfloat16>();

    o = p - lr[0] * g;
  }
};

// SelectedRows
template <>
struct sgd_dense_param_kernel<
    platform::bfloat16, framework::VarTypeTrait<framework::SelectedRows>::kId> {
  void operator()(const framework::ExecutionContext &ctx) const {
    VLOG(4) << "[CPU]: sgd_dense_param_kernel<bfloat16, SelectedRows>";
    const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");
    auto *param_out = ctx.Output<framework::Tensor>("ParamOut");
    const auto *grad = ctx.Input<framework::SelectedRows>("Grad");

    const auto &grad_value = grad->value();
    const auto &grad_rows = grad->rows();
    const auto grad_height = grad->height();
    const int64_t grad_val_height = static_cast<int64_t>(grad_rows.size());
    const auto grad_width = grad_value.numel() / grad_val_height;

    const auto *grad_data = grad_value.data<platform::bfloat16>();
    auto *out_data = param_out->data<platform::bfloat16>();
    const auto *lr = learning_rate->data<platform::bfloat16>();

    for (size_t i = 0; i < grad_rows.size(); ++i) {
      PADDLE_ENFORCE_LT(
          grad_rows[i], grad_height,
          platform::errors::OutOfRange(
              "Grad rows index value should be less than grad height."
              "Got [%s], but expected less than [%s]",
              grad_rows[i], grad_height));
      const int64_t row = grad_rows[i];
      for (int64_t j = 0; j < grad_width; ++j) {
        out_data[row * grad_width + j] -= lr[0] * grad_data[i * grad_width + j];
      }
    }
  }
};

template <typename T>
void sgd_op_invoke_dense_param_kernel(const framework::ExecutionContext &ctx) {
  const auto *param = ctx.Input<framework::Tensor>("Param");
  auto *param_out = ctx.Output<framework::Tensor>("ParamOut");
  const auto *grad_var = ctx.InputVar("Grad");

  if (grad_var->IsType<framework::LoDTensor>()) {
    const auto *grad = ctx.Input<framework::Tensor>("Grad");
    const auto sz = param_out->numel();
    PADDLE_ENFORCE_EQ(param->numel(), sz,
                      platform::errors::InvalidArgument(
                          "The input tensor Param's numel of SgdOp "
                          "should be equal with ParamOut's numel. "
                          "But received Param's "
                          "numel = [%s], ParamOut's numel = [%s]",
                          param->numel(), sz));
    PADDLE_ENFORCE_EQ(grad->numel(), sz,
                      platform::errors::InvalidArgument(
                          "The input tensor Grad's numel of SgdOp "
                          "should be equal with ParamOut's numel. "
                          "But received Grad's "
                          "numel = [%s], ParamOut's numel = [%s]",
                          grad->numel(), sz));

    sgd_dense_param_kernel<
        T, framework::VarTypeTrait<framework::LoDTensor>::kId>()(ctx);
  } else if (grad_var->IsType<framework::SelectedRows>()) {
    // TODO(qijun): In Sparse SGD operator, in-place update is enforced.
    // This manual optimization brings difficulty to track data dependency.
    // It's better to find a more elegant solution.
    PADDLE_ENFORCE_EQ(param, param_out,
                      platform::errors::InvalidArgument(
                          "The input tensor Param of SgdOp "
                          "should be equal with ParamOut if variable's "
                          "type is SelectedRows. "));
    const auto *grad = ctx.Input<framework::SelectedRows>("Grad");

    // for distributed training, a sparse var may be empty,
    // just skip updating.
    if (grad->rows().size() == 0) {
      return;
    }

    auto out_dims = param_out->dims();
    PADDLE_ENFORCE_EQ(
        grad->height(), out_dims[0],
        platform::errors::InvalidArgument(
            "The input tensor Grad's height of SgdOp "
            "should be equal with ParamOut's dims. But received  Grad's "
            "height [%s] and ParamOut's dims [%s]",
            grad->height(), out_dims[0]));

    auto &grad_value = grad->value();
    auto &grad_rows = grad->rows();
    const auto param_height = param_out->dims()[0];
    const auto param_width = param_out->numel() / param_height;
    // note: it is not grad->height()
    const auto grad_height = static_cast<int64_t>(grad_rows.size());
    const auto grad_width = grad_value.numel() / grad_height;

    PADDLE_ENFORCE_EQ(
        grad_width, param_width,
        platform::errors::InvalidArgument(
            "The grad_value's numel of SgdOp "
            "should be equal with param_out's numel. But received "
            "grad_value's numel [%s] and param_out's numel [%s]",
            grad_width, param_width));

    sgd_dense_param_kernel<
        T, framework::VarTypeTrait<framework::SelectedRows>::kId>()(ctx);
  } else {
    PADDLE_ENFORCE_EQ(
        false, true, platform::errors::PermissionDenied(
                         "Unsupported Variable Type of Grad in SgdOp. Excepted "
                         "LodTensor or SelectedRows, But received [%s]",
                         paddle::framework::ToTypeName(grad_var->Type())));
  }
}

}  // namespace detail

230
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
231
class SGDOpKernel : public framework::OpKernel<T> {
232 233 234 235 236 237 238
 public:
  void Compute(const framework::ExecutionContext &ctx) const override;
};

template <typename T>
class SGDOpKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
239
 public:
240 241 242 243 244 245 246
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");

    const auto *param_var = ctx.InputVar("Param");
    const auto *grad_var = ctx.InputVar("Grad");

    if (param_var->IsType<framework::LoDTensor>()) {
247
      detail::sgd_op_invoke_dense_param_kernel<T>(ctx);
248
    } else if (param_var->IsType<framework::SelectedRows>()) {
C
Chengmo 已提交
249 250
      PADDLE_ENFORCE_EQ(grad_var->IsType<framework::SelectedRows>(), true,
                        platform::errors::InvalidArgument(
251 252
                            "When param is SelectedRows, gradient should also "
                            "be SelectedRows"));
253 254 255
      const auto &param = param_var->Get<framework::SelectedRows>();
      auto *param_out = ctx.Output<framework::SelectedRows>("ParamOut");
      const auto &grad = grad_var->Get<framework::SelectedRows>();
C
chengduoZH 已提交
256

257 258
      // for distributed training, a sparse var may be empty,
      // just skip updating.
259
      if (grad.rows().size() == 0) {
260 261 262
        return;
      }

Q
qiaolongfei 已提交
263 264
      auto param_row_width = param.value().dims()[1];
      auto grad_row_width = grad.value().dims()[1];
C
Chengmo 已提交
265 266 267 268 269 270 271
      PADDLE_ENFORCE_EQ(
          param_row_width, grad_row_width,
          platform::errors::InvalidArgument(
              "The param_row in SgdOP should have the same size with grad_row. "
              "But received param_row's width is [%s], and grad_row's width is "
              "[%s]",
              param_row_width, grad_row_width));
C
chengduoZH 已提交
272

273 274 275 276
      const auto *lr = learning_rate->data<T>();
      const auto *grad_data = grad.value().data<T>();
      auto *out_data = param_out->mutable_value()->data<T>();
      for (size_t i = 0; i < grad.rows().size(); i++) {
277
        int64_t id_index = param_out->AutoGrownIndex(grad.rows()[i], false);
C
Chengmo 已提交
278 279 280 281 282
        PADDLE_ENFORCE_GE(
            id_index, static_cast<int64_t>(0),
            platform::errors::InvalidArgument(
                "The id in SgdOp should be >= 0. But recevied id_index is [%s]",
                id_index));
283
        for (int64_t j = 0; j < grad_row_width; j++) {
284 285
          out_data[id_index * grad_row_width + j] -=
              lr[0] * grad_data[i * grad_row_width + j];
C
chengduoZH 已提交
286 287
        }
      }
Q
qijun 已提交
288
    } else {
C
Chengmo 已提交
289 290 291 292 293 294
      PADDLE_ENFORCE_EQ(
          false, true,
          platform::errors::PermissionDenied(
              "Unsupported Variable Type of Parameter in SgdOp. Excepted "
              "LodTensor or SelectedRows, But received [%s]",
              paddle::framework::ToTypeName(param_var->Type())));
Q
qijun 已提交
295
    }
Q
Qiao Longfei 已提交
296 297
  }
};
298

Q
Qiao Longfei 已提交
299 300
}  // namespace operators
}  // namespace paddle