operator_test.cc 24.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "gtest/gtest.h"
D
dzhwinter 已提交
15

Y
Yi Wang 已提交
16 17 18
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
19
#include "paddle/fluid/platform/init.h"
Q
Qiao Longfei 已提交
20

21 22
DECLARE_bool(enable_unused_var_check);

Q
Qiao Longfei 已提交
23 24 25
namespace paddle {
namespace framework {

Q
Qiao Longfei 已提交
26 27 28
static int op_run_num = 0;

class OpWithoutKernelTest : public OperatorBase {
Q
Qiao Longfei 已提交
29
 public:
Y
Yu Yang 已提交
30 31
  OpWithoutKernelTest(const std::string& type, const VariableNameMap& inputs,
                      const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
32
      : OperatorBase(type, inputs, outputs, attrs), x(1) {}
33 34 35 36

 private:
  void RunImpl(const Scope& scope,
               const platform::Place& place) const override {
Y
Yu Yang 已提交
37 38 39 40
    ++op_run_num;
    ASSERT_EQ(static_cast<int>(inputs_.size()), 1);
    ASSERT_EQ(static_cast<int>(outputs_.size()), 1);
    ASSERT_EQ(scope.FindVar(inputs_.at("input")[0]), nullptr);
Q
Qiao Longfei 已提交
41
    ASSERT_EQ(x, 1);
Y
Yu Yang 已提交
42
    ASSERT_NE(scope.FindVar(outputs_.at("output")[0]), nullptr);
Q
Qiao Longfei 已提交
43
  }
Q
Qiao Longfei 已提交
44 45

 public:
Y
Yu Yang 已提交
46
  int x{0};
Q
Qiao Longfei 已提交
47 48
};

D
dzhwinter 已提交
49
class OpWithoutKernelCheckerMaker : public OpProtoAndCheckerMaker {
Q
Qiao Longfei 已提交
50
 public:
Y
Yu Yang 已提交
51
  void Make() {
Q
Qiao Longfei 已提交
52 53
    AddInput("input", "input of test op");
    AddOutput("output", "output of test op");
Q
Qiao Longfei 已提交
54
    AddAttr<float>("scale", "scale of cosine op");
X
Xin Pan 已提交
55 56
    AddAttr<int>("kernel_sub_type", "kernels with different implementations.")
        .SetDefault(0);
Q
Qiao Longfei 已提交
57 58 59 60 61 62 63
    AddComment("This is test op");
  }
};

}  // namespace framework
}  // namespace paddle

Y
Yu Yang 已提交
64 65
static void BuildVar(const std::string& param_name,
                     std::initializer_list<const char*> arguments,
66
                     paddle::framework::proto::OpDesc::Var* var) {
Y
Yu Yang 已提交
67 68 69 70 71 72
  var->set_parameter(param_name);
  for (auto& arg_name : arguments) {
    *var->mutable_arguments()->Add() = arg_name;
  }
}

D
dzhwinter 已提交
73 74 75
REGISTER_OP_WITHOUT_GRADIENT(test_operator,
                             paddle::framework::OpWithoutKernelTest,
                             paddle::framework::OpWithoutKernelCheckerMaker);
Q
Qiao Longfei 已提交
76 77

TEST(OperatorBase, all) {
X
Xin Pan 已提交
78
  paddle::framework::InitDevices(true);
79
  paddle::framework::proto::OpDesc op_desc;
Q
Qiao Longfei 已提交
80
  op_desc.set_type("test_operator");
Y
Yu Yang 已提交
81 82
  BuildVar("input", {"IN1"}, op_desc.add_inputs());
  BuildVar("output", {"OUT1"}, op_desc.add_outputs());
Y
Yu Yang 已提交
83

Q
Qiao Longfei 已提交
84 85
  auto attr = op_desc.mutable_attrs()->Add();
  attr->set_name("scale");
86
  attr->set_type(paddle::framework::proto::AttrType::FLOAT);
Q
Qiao Longfei 已提交
87
  attr->set_f(3.14);
Q
Qiao Longfei 已提交
88

D
dzhwinter 已提交
89
  paddle::platform::CPUPlace cpu_place;
Y
Yu Yang 已提交
90
  paddle::framework::Scope scope;
Q
Qiao Longfei 已提交
91

92
  auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
D
dongzhihong 已提交
93
  scope.Var("OUT1");
Q
Qiao Longfei 已提交
94
  ASSERT_EQ(paddle::framework::op_run_num, 0);
D
dzhwinter 已提交
95
  op->Run(scope, cpu_place);
Q
Qiao Longfei 已提交
96
  ASSERT_EQ(paddle::framework::op_run_num, 1);
Q
Qiao Longfei 已提交
97 98 99 100 101
}

namespace paddle {
namespace framework {

X
Xin Pan 已提交
102 103
static int special_type_value = 1;

Q
Qiao Longfei 已提交
104 105
class OpKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
106
  void Make() {
Y
Yan Chunwei 已提交
107 108 109 110
    AddInput("x", "input of test op");
    AddOutput("y", "output of test op");
    AddAttr<float>("scale", "scale of cosine op")
        .SetDefault(1.0)
F
fengjiayi 已提交
111
        .GreaterThan(0.0);
X
Xin Pan 已提交
112 113
    AddAttr<int>("kernel_sub_type", "kernels with different implementations.")
        .SetDefault(0);
Q
Qiao Longfei 已提交
114 115 116 117
    AddComment("This is test op");
  }
};

Q
Qiao Longfei 已提交
118
static int cpu_kernel_run_num = 0;
X
Xin Pan 已提交
119
static int cpu_kernel2_run_num = 0;
Q
Qiao Longfei 已提交
120

Q
Qiao Longfei 已提交
121
class OpWithKernelTest : public OperatorWithKernel {
Y
Yu Yang 已提交
122 123 124
 public:
  using OperatorWithKernel::OperatorWithKernel;

Y
Yu Yang 已提交
125
 protected:
126
  void InferShape(framework::InferShapeContext* ctx) const override {}
127 128
  OpKernelType GetExpectedKernelType(
      const ExecutionContext& ctx) const override {
X
Xin Pan 已提交
129 130 131 132
    int sub_type = ctx.Attr<int>("kernel_sub_type");
    return OpKernelType(proto::VarType::FP32, ctx.GetPlace(),
                        framework::DataLayout::kAnyLayout,
                        framework::LibraryType::kPlain, sub_type);
Y
Yu Yang 已提交
133
  }
Q
Qiao Longfei 已提交
134 135
};

136
template <typename T1, typename T2>
Y
Yu Yang 已提交
137
class CPUKernelTest : public OpKernel<float> {
Q
Qiao Longfei 已提交
138
 public:
139
  void Compute(const ExecutionContext& ctx) const {
H
hong 已提交
140
    std::cout << ctx.DebugString() << std::endl;
Q
Qiao Longfei 已提交
141
    cpu_kernel_run_num++;
H
hong 已提交
142 143
    ASSERT_EQ(ctx.InputName("x"), "IN1");
    ASSERT_EQ(ctx.OutputName("y"), "OUT1");
144 145
    auto* x = ctx.Input<Tensor>("X");
    ASSERT_EQ(x, nullptr);
Y
Yan Chunwei 已提交
146 147 148
  }
};

X
Xin Pan 已提交
149 150 151 152
template <typename T1, typename T2>
class CPUKernel2Test : public OpKernel<float> {
 public:
  void Compute(const ExecutionContext& ctx) const {
H
hong 已提交
153
    std::cout << ctx.DebugString() << std::endl;
X
Xin Pan 已提交
154
    cpu_kernel2_run_num++;
H
hong 已提交
155 156
    ASSERT_EQ(ctx.InputName("x"), "IN1");
    ASSERT_EQ(ctx.OutputName("y"), "OUT1");
X
Xin Pan 已提交
157 158 159
  }
};

Y
Yan Chunwei 已提交
160 161 162
class OpKernelTestMultiInputsProtoAndCheckerMaker
    : public OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
163
  void Make() {
Y
Yu Yang 已提交
164
    AddInput("xs", "inputs of test op").AsDuplicable();
Y
Yan Chunwei 已提交
165
    AddInput("k", "input of test op");
Y
Yu Yang 已提交
166
    AddOutput("ys", "outputs of test op").AsDuplicable();
Y
Yan Chunwei 已提交
167 168
    AddAttr<float>("scale", "scale of cosine op")
        .SetDefault(1.0)
F
fengjiayi 已提交
169
        .GreaterThan(0.0);
X
Xin Pan 已提交
170 171
    AddAttr<int>("kernel_sub_type", "kernels with different implementations.")
        .SetDefault(0);
Y
Yan Chunwei 已提交
172 173 174 175
    AddComment("This is test op");
  }
};

Y
Yu Yang 已提交
176
class CPUKernalMultiInputsTest : public OpKernel<float> {
Y
Yan Chunwei 已提交
177
 public:
178
  void Compute(const ExecutionContext& ctx) const {
H
hong 已提交
179
    auto xs = ctx.InputNames("xs");
Y
Yan Chunwei 已提交
180 181 182 183 184
    ASSERT_EQ(xs.size(), 3UL);
    ASSERT_EQ(xs[0], "x0");
    ASSERT_EQ(xs[1], "x1");
    ASSERT_EQ(xs[2], "x2");

185
    auto inVar0 = ctx.MultiInputVar("xs");
186
    ASSERT_EQ(inVar0.size(), 3U);
187 188 189 190 191

    auto intVar1 = ctx.InputVar("k");
    ASSERT_NE(intVar1, nullptr);

    auto outVar0 = ctx.MultiOutputVar("ys");
192
    ASSERT_EQ(outVar0.size(), 2U);
193 194

    auto inTensor0 = ctx.MultiInput<Tensor>("xs");
195
    ASSERT_EQ(inTensor0.size(), 3U);
196 197 198 199 200

    auto intTensor1 = ctx.Input<Tensor>("k");
    ASSERT_NE(intTensor1, nullptr);

    auto outTensor0 = ctx.MultiOutput<Tensor>("ys");
201
    ASSERT_EQ(outTensor0.size(), 2U);
202

H
hong 已提交
203
    auto k = ctx.InputName("k");
Y
Yan Chunwei 已提交
204 205
    ASSERT_EQ(k, "k0");

H
hong 已提交
206
    auto ys = ctx.OutputNames("ys");
Y
Yan Chunwei 已提交
207 208 209
    ASSERT_EQ(ys.size(), 2UL);
    ASSERT_EQ(ys[0], "y0");
    ASSERT_EQ(ys[1], "y1");
Q
Qiao Longfei 已提交
210 211 212
  }
};

Y
Yu Yang 已提交
213 214 215
}  // namespace framework
}  // namespace paddle

F
fengjiayi 已提交
216 217 218
REGISTER_OP_WITHOUT_GRADIENT(
    op_with_kernel, paddle::framework::OpWithKernelTest,
    paddle::framework::OpKernelTestProtoAndCheckerMaker);
X
Xin Pan 已提交
219

X
Xin Pan 已提交
220 221
REGISTER_OP_CPU_KERNEL(op_with_kernel,
                       paddle::framework::CPUKernelTest<float, float>);
X
Xin Pan 已提交
222 223

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
X
Xin Pan 已提交
224 225
    op_with_kernel, CPU, paddle::platform::CPUPlace, MY_SPECIAL_NAME,
    paddle::framework::special_type_value,
X
Xin Pan 已提交
226
    paddle::framework::CPUKernel2Test<float, float>);
Q
Qiao Longfei 已提交
227

Y
Yan Chunwei 已提交
228
// test with single input
Q
Qiao Longfei 已提交
229
TEST(OpKernel, all) {
X
Xin Pan 已提交
230
  paddle::framework::InitDevices(true);
231
  paddle::framework::proto::OpDesc op_desc;
Q
Qiao Longfei 已提交
232
  op_desc.set_type("op_with_kernel");
Y
Fix CI  
Yu Yang 已提交
233 234
  BuildVar("x", {"IN1"}, op_desc.add_inputs());
  BuildVar("y", {"OUT1"}, op_desc.add_outputs());
Y
Yu Yang 已提交
235

Q
Qiao Longfei 已提交
236 237
  auto attr = op_desc.mutable_attrs()->Add();
  attr->set_name("scale");
238
  attr->set_type(paddle::framework::proto::AttrType::FLOAT);
Q
Qiao Longfei 已提交
239 240
  attr->set_f(3.14);

D
dzhwinter 已提交
241
  paddle::platform::CPUPlace cpu_place;
Y
Yu Yang 已提交
242
  paddle::framework::Scope scope;
Q
Qiao Longfei 已提交
243

244
  auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
Q
Qiao Longfei 已提交
245
  ASSERT_EQ(paddle::framework::cpu_kernel_run_num, 0);
D
dzhwinter 已提交
246
  op->Run(scope, cpu_place);
X
Xin Pan 已提交
247
  // kerne_sub_type = 0, hence cpu_kernel is called, cpu_kernel2 is not called.
Q
Qiao Longfei 已提交
248
  ASSERT_EQ(paddle::framework::cpu_kernel_run_num, 1);
X
Xin Pan 已提交
249 250 251 252 253 254 255 256
  ASSERT_EQ(paddle::framework::cpu_kernel2_run_num, 0);

  attr = op_desc.mutable_attrs()->Add();
  attr->set_name("kernel_sub_type");
  attr->set_type(paddle::framework::proto::AttrType::INT);
  attr->set_i(1);
  auto op2 = paddle::framework::OpRegistry::CreateOp(op_desc);
  op2->Run(scope, cpu_place);
X
Xin Pan 已提交
257
  // kerne_sub_type = 1, hence cpu_kernel2 is called, cpu_kernel is not called.
X
Xin Pan 已提交
258 259
  ASSERT_EQ(paddle::framework::cpu_kernel_run_num, 1);
  ASSERT_EQ(paddle::framework::cpu_kernel2_run_num, 1);
Q
Qiao Longfei 已提交
260
}
Y
Yan Chunwei 已提交
261

F
fengjiayi 已提交
262 263 264
REGISTER_OP_WITHOUT_GRADIENT(
    op_multi_inputs_with_kernel, paddle::framework::OpWithKernelTest,
    paddle::framework::OpKernelTestMultiInputsProtoAndCheckerMaker);
Y
Yan Chunwei 已提交
265 266 267 268 269
REGISTER_OP_CPU_KERNEL(op_multi_inputs_with_kernel,
                       paddle::framework::CPUKernalMultiInputsTest);

// test with multi inputs
TEST(OpKernel, multi_inputs) {
X
Xin Pan 已提交
270
  paddle::framework::InitDevices(true);
271
  paddle::framework::proto::OpDesc op_desc;
D
dzhwinter 已提交
272

Y
Yan Chunwei 已提交
273
  op_desc.set_type("op_multi_inputs_with_kernel");
Y
Yu Yang 已提交
274 275 276
  BuildVar("xs", {"x0", "x1", "x2"}, op_desc.add_inputs());
  BuildVar("k", {"k0"}, op_desc.add_inputs());
  BuildVar("ys", {"y0", "y1"}, op_desc.add_outputs());
Y
Yu Yang 已提交
277

Y
Yan Chunwei 已提交
278 279
  auto attr = op_desc.mutable_attrs()->Add();
  attr->set_name("scale");
280
  attr->set_type(paddle::framework::proto::AttrType::FLOAT);
Y
Yan Chunwei 已提交
281 282
  attr->set_f(3.14);

D
dzhwinter 已提交
283
  paddle::platform::CPUPlace cpu_place;
Y
Yu Yang 已提交
284
  paddle::framework::Scope scope;
285 286 287 288 289 290
  scope.Var("x0")->GetMutable<paddle::framework::LoDTensor>();
  scope.Var("x1")->GetMutable<paddle::framework::LoDTensor>();
  scope.Var("x2")->GetMutable<paddle::framework::LoDTensor>();
  scope.Var("k0")->GetMutable<paddle::framework::LoDTensor>();
  scope.Var("y0")->GetMutable<paddle::framework::LoDTensor>();
  scope.Var("y1")->GetMutable<paddle::framework::LoDTensor>();
Y
Yan Chunwei 已提交
291

292
  auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
D
dzhwinter 已提交
293
  op->Run(scope, cpu_place);
Y
Yan Chunwei 已提交
294
}
295

M
minqiyang 已提交
296
TEST(VarNameTest, all) {
297 298
  std::string var_name("X");
  std::string grad_var_name = paddle::framework::GradVarName(var_name);
M
minqiyang 已提交
299
  ASSERT_EQ(grad_var_name, "X@GRAD");
300
  std::string original_var_name =
M
minqiyang 已提交
301
      paddle::framework::GradOriginalVarName(grad_var_name);
M
minqiyang 已提交
302
  ASSERT_EQ(original_var_name, "X");
M
minqiyang 已提交
303
  original_var_name = paddle::framework::GradOriginalVarName(original_var_name);
M
minqiyang 已提交
304 305 306 307 308
  ASSERT_EQ(original_var_name, "X");

  std::string var_name_2("XYZ");
  grad_var_name = paddle::framework::GradVarName(var_name_2);
  ASSERT_EQ(grad_var_name, "XYZ@GRAD");
M
minqiyang 已提交
309
  original_var_name = paddle::framework::GradOriginalVarName(grad_var_name);
M
minqiyang 已提交
310
  ASSERT_EQ(original_var_name, "XYZ");
M
minqiyang 已提交
311
  original_var_name = paddle::framework::GradOriginalVarName(original_var_name);
M
minqiyang 已提交
312 313 314 315 316
  ASSERT_EQ(original_var_name, "XYZ");

  std::string var_name_3("");
  grad_var_name = paddle::framework::GradVarName(var_name_3);
  ASSERT_EQ(grad_var_name, "@GRAD");
M
minqiyang 已提交
317
  original_var_name = paddle::framework::GradOriginalVarName(grad_var_name);
M
minqiyang 已提交
318
  ASSERT_EQ(original_var_name, "");
M
minqiyang 已提交
319
  original_var_name = paddle::framework::GradOriginalVarName(original_var_name);
M
minqiyang 已提交
320
  ASSERT_EQ(original_var_name, "");
321
}
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

namespace paddle {
namespace framework {

class IndicateLoDTensorDataTypeTest : public OperatorWithKernel {
 public:
  using OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {}
  OpKernelType GetExpectedKernelType(
      const ExecutionContext& ctx) const override {
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "LoDTensor");
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};
338

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
class IndicateLoDTensorDataTypeTestProtoMaker : public OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("LoDTensor", "Input of Tensor type Variable.");
    AddComment("This Op is only for IndicateVarDataType inferface test.");
  }
};

class IndicateSelectedRowsDataTypeTest : public OperatorWithKernel {
 public:
  using OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {}
  OpKernelType GetExpectedKernelType(
      const ExecutionContext& ctx) const override {
    auto data_type =
        OperatorWithKernel::IndicateVarDataType(ctx, "SelectedRows");
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};
class IndicateSelectedRowsDataTypeTestProtoMaker
    : public OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("SelectedRows", "Input of SelectedRows type Variable.");
    AddComment("This Op is only for IndicateVarDataType inferface test.");
  }
};

class IndicateOtherDataTypeTest : public OperatorWithKernel {
 public:
  using OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {}
  OpKernelType GetExpectedKernelType(
      const ExecutionContext& ctx) const override {
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Other");
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};
class IndicateOtherDataTypeTestProtoMaker : public OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("Other", "Input of Other type Variable");
    AddComment("This Op is only for IndicateVarDataType inferface test.");
  }
};

template <typename DeviceContext, typename T>
390
class EmptyTestKernel : public OpKernel<T> {
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
 public:
  void Compute(const ExecutionContext& ctx) const {}
};

}  // namespace framework
}  // namespace paddle

REGISTER_OP_WITHOUT_GRADIENT(
    indicate_lod_tensor_data_type_test,
    paddle::framework::IndicateLoDTensorDataTypeTest,
    paddle::framework::IndicateLoDTensorDataTypeTestProtoMaker);
REGISTER_OP_WITHOUT_GRADIENT(
    indicate_selected_rows_data_type_test,
    paddle::framework::IndicateSelectedRowsDataTypeTest,
    paddle::framework::IndicateSelectedRowsDataTypeTestProtoMaker);
REGISTER_OP_WITHOUT_GRADIENT(
    indicate_other_data_type_test, paddle::framework::IndicateOtherDataTypeTest,
    paddle::framework::IndicateOtherDataTypeTestProtoMaker);

REGISTER_OP_CPU_KERNEL(indicate_lod_tensor_data_type_test,
411
                       paddle::framework::EmptyTestKernel<
412 413
                           paddle::platform::CPUDeviceContext, int>);
REGISTER_OP_CPU_KERNEL(indicate_selected_rows_data_type_test,
414
                       paddle::framework::EmptyTestKernel<
415 416
                           paddle::platform::CPUDeviceContext, int>);
REGISTER_OP_CPU_KERNEL(indicate_other_data_type_test,
417
                       paddle::framework::EmptyTestKernel<
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
                           paddle::platform::CPUDeviceContext, int>);

TEST(IndicateVarDataTypeTest, lodtensor) {
  paddle::framework::InitDevices(true);
  paddle::framework::proto::OpDesc op_desc;
  op_desc.set_type("indicate_lod_tensor_data_type_test");
  BuildVar("LoDTensor", {"lodtensor_1"}, op_desc.add_inputs());

  paddle::platform::CPUPlace cpu_place;
  paddle::framework::Scope scope;

  auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
  auto* var = scope.Var("lodtensor_1");
  var->GetMutable<paddle::framework::LoDTensor>();

  bool caught = false;
  try {
    op->Run(scope, cpu_place);
Z
Zeng Jinle 已提交
436
  } catch (paddle::platform::EnforceNotMet& err) {
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
    caught = true;
    std::string ex_msg = err.what();
    EXPECT_TRUE(
        ex_msg.find(
            "The Tensor in the indicate_lod_tensor_data_type_test Op's "
            "Input Variable LoDTensor(lodtensor_1) is not initialized") !=
        std::string::npos);
  }
  ASSERT_TRUE(caught);
}

TEST(IndicateVarDataTypeTest, selectedrows) {
  paddle::framework::InitDevices(true);
  paddle::framework::proto::OpDesc op_desc;
  op_desc.set_type("indicate_selected_rows_data_type_test");
  BuildVar("SelectedRows", {"selected_rows_1"}, op_desc.add_inputs());

  paddle::platform::CPUPlace cpu_place;
  paddle::framework::Scope scope;

  auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
  auto* var = scope.Var("selected_rows_1");
  var->GetMutable<paddle::framework::SelectedRows>();

  bool caught = false;
  try {
    op->Run(scope, cpu_place);
Z
Zeng Jinle 已提交
464
  } catch (paddle::platform::EnforceNotMet& err) {
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
    caught = true;
    std::string ex_msg = err.what();
    EXPECT_TRUE(
        ex_msg.find("The Tensor in the indicate_selected_rows_data_type_test "
                    "Op's Input Variable SelectedRows(selected_rows_1) is not "
                    "initialized") != std::string::npos);
  }
  ASSERT_TRUE(caught);
}

TEST(IndicateVarDataTypeTest, other) {
  paddle::framework::InitDevices(true);
  paddle::framework::proto::OpDesc op_desc;
  op_desc.set_type("indicate_other_data_type_test");
  BuildVar("Other", {"lod_tensor_array_1"}, op_desc.add_inputs());

  paddle::platform::CPUPlace cpu_place;
  paddle::framework::Scope scope;

  auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
  auto* var = scope.Var("lod_tensor_array_1");
  var->GetMutable<paddle::framework::LoDTensorArray>();

  bool caught = false;
  try {
    op->Run(scope, cpu_place);
Z
Zeng Jinle 已提交
491
  } catch (paddle::platform::EnforceNotMet& err) {
492 493 494 495 496 497 498 499 500 501
    caught = true;
    std::string ex_msg = err.what();
    EXPECT_TRUE(ex_msg.find("The Input Variable(Other) of "
                            "indicate_other_data_type_test Op used to "
                            "determine kernel data type "
                            "is empty or not LoDTensor or SelectedRows") !=
                std::string::npos);
  }
  ASSERT_TRUE(caught);
}
502

H
hong 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
TEST(ExecutionContextAttrAndInOut, new_api) {
  paddle::framework::InitDevices(true);
  paddle::framework::proto::OpDesc op_desc;
  op_desc.set_type("test_operator");
  BuildVar("input", {"IN1"}, op_desc.add_inputs());
  BuildVar("output", {"OUT1"}, op_desc.add_outputs());

  auto attr = op_desc.mutable_attrs()->Add();
  attr->set_name("scale");
  attr->set_type(paddle::framework::proto::AttrType::FLOAT);
  attr->set_f(3.14);

  paddle::platform::CPUPlace cpu_place;
  paddle::framework::Scope scope;

  auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
  auto* var = scope.Var("OUT1");
  var->GetMutable<paddle::framework::LoDTensorArray>();

  paddle::platform::DeviceContextPool& pool =
      paddle::platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(cpu_place);

  paddle::framework::RuntimeContext ctx({}, {});
  paddle::framework::ExecutionContext exe_context(*(op.get()), scope, *dev_ctx,
                                                  ctx, nullptr);

  ASSERT_EQ(exe_context.InputSize("input"), 1u);
  ASSERT_EQ(exe_context.OutputSize("output"), 1u);

  auto attr_map = exe_context.Attrs();
  ASSERT_EQ(boost::get<float>(attr_map["scale"]), 3.14f);
  ASSERT_EQ(exe_context.Type(), "test_operator");
}

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
namespace paddle {
namespace framework {

class GetLoDLevelTest : public OperatorWithKernel {
 public:
  using OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInputs("X"), true,
                      "Input(X) should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) should not be null.");
    PADDLE_ENFORCE_GT(ctx->GetLoDLevel("X"), 0,
                      "The LoD level Input(X) should be larger than 0.");
  }
};

class SetLoDLevelTest : public OperatorWithKernel {
 public:
  using OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInputs("X"), true,
                      "Input(X) should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) should not be null.");
    ctx->SetLoDLevel("Out", 1);
  }
};

class GetSetLoDLevelTestMaker : public OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "(LoDTensor) Input Variable.");
    AddOutput("Out", "(LoDTensor) Output Variable.");
    AddComment("This Op is only for Get/SetLoDLevel inferface test.");
  }
};

}  // namespace framework
}  // namespace paddle

REGISTER_OP_WITHOUT_GRADIENT(get_lod_level_test,
                             paddle::framework::GetLoDLevelTest,
                             paddle::framework::GetSetLoDLevelTestMaker);
REGISTER_OP_CPU_KERNEL(get_lod_level_test,
                       paddle::framework::EmptyTestKernel<
                           paddle::platform::CPUDeviceContext, float>);

REGISTER_OP_WITHOUT_GRADIENT(set_lod_level_test,
                             paddle::framework::SetLoDLevelTest,
                             paddle::framework::GetSetLoDLevelTestMaker);
REGISTER_OP_CPU_KERNEL(set_lod_level_test,
                       paddle::framework::EmptyTestKernel<
                           paddle::platform::CPUDeviceContext, float>);

void SetGetLoDLevelTestMain(std::string op_type) {
  paddle::framework::InitDevices(false, {});
  paddle::framework::proto::OpDesc op_desc;
  op_desc.set_type(op_type);
  BuildVar("X", {"x.0"}, op_desc.add_inputs());
  BuildVar("Out", {"out.0"}, op_desc.add_outputs());

  paddle::platform::CPUPlace place;
  paddle::framework::Scope scope;

  auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
  auto* x_var = scope.Var("x.0");
  auto* x = x_var->GetMutable<paddle::framework::LoDTensor>();
  x->mutable_data<float>(paddle::framework::make_ddim({64}), place);
  auto* out_var = scope.Var("out.0");
  out_var->GetMutable<paddle::framework::LoDTensor>();

  bool caught = false;
  std::string err_str =
      (op_type == "get_lod_level_test") ? "GetLoDLevel" : "SetLoDLevel";
  err_str +=
      " is only used in compile time. The calculation of output's actual lod "
      "is different among operators so that should be set in the runtime "
      "kernel.";
  try {
    op->Run(scope, place);
Z
Zeng Jinle 已提交
622
  } catch (paddle::platform::EnforceNotMet& err) {
623 624 625 626 627 628 629 630 631 632
    caught = true;
    std::string ex_msg = err.what();
    EXPECT_TRUE(ex_msg.find(err_str) != std::string::npos);
  }
  ASSERT_TRUE(caught);
}

TEST(GetLoDLevelTest, base) { SetGetLoDLevelTestMain("get_lod_level_test"); }

TEST(SetLoDLevelTest, base) { SetGetLoDLevelTestMain("set_lod_level_test"); }
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746

namespace paddle {
namespace framework {

class OpUnusedVarTest : public OperatorWithKernel {
 public:
  using OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {}
  OpKernelType GetExpectedKernelType(
      const ExecutionContext& ctx) const override {
    return OpKernelType(proto::VarType::FP32, ctx.GetPlace(),
                        framework::DataLayout::kAnyLayout);
  }
};

class OpUnusedVarTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "input of test op");
    AddOutput("Y", "output of test op");
    AddComment("This is test op for unused var check.");
  }
};

template <typename T>
class OpWithUnusedVarKernelTest : public OpKernel<T> {
 public:
  void Compute(const ExecutionContext& ctx) const {
    ASSERT_EQ(ctx.InputName("X"), "X");
    ASSERT_EQ(ctx.OutputName("Y"), "Y");
  }
};

template <typename T>
class OpWithoutUnusedVarKernelTest : public OpKernel<T> {
 public:
  void Compute(const ExecutionContext& ctx) const {
    ASSERT_EQ(ctx.InputName("X"), "X");
    ASSERT_EQ(ctx.OutputName("Y"), "Y");
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Output<Tensor>("Y");
    ASSERT_NE(x, y);
    ASSERT_NE(y, nullptr);
  }
};

}  // namespace framework
}  // namespace paddle

REGISTER_OP_WITHOUT_GRADIENT(
    op_with_unused_var, paddle::framework::OpUnusedVarTest,
    paddle::framework::OpUnusedVarTestProtoAndCheckerMaker);

REGISTER_OP_CPU_KERNEL(op_with_unused_var,
                       paddle::framework::OpWithUnusedVarKernelTest<float>);

REGISTER_OP_WITHOUT_GRADIENT(
    op_without_unused_var, paddle::framework::OpUnusedVarTest,
    paddle::framework::OpUnusedVarTestProtoAndCheckerMaker);

REGISTER_OP_CPU_KERNEL(op_without_unused_var,
                       paddle::framework::OpWithoutUnusedVarKernelTest<float>);

// test with single input
TEST(OpWithUnusedVar, all) {
  // enable the unused_var_check
  FLAGS_enable_unused_var_check = true;
  paddle::framework::InitDevices(true);
  paddle::framework::proto::OpDesc op_desc;
  op_desc.set_type("op_with_unused_var");
  BuildVar("X", {"X"}, op_desc.add_inputs());
  BuildVar("Y", {"Y"}, op_desc.add_outputs());

  paddle::platform::CPUPlace cpu_place;
  paddle::framework::Scope scope;
  auto* x = scope.Var("X")->GetMutable<paddle::framework::LoDTensor>();
  auto* y = scope.Var("Y")->GetMutable<paddle::framework::LoDTensor>();
  x->Resize({32, 64});
  y->Resize({32, 64});
  x->mutable_data<float>(cpu_place);
  y->mutable_data<float>(cpu_place);

  auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
  // should throw exception
  ASSERT_THROW(op->Run(scope, cpu_place), paddle::platform::EnforceNotMet);
  FLAGS_enable_unused_var_check = false;
}

TEST(OpWithoutUnusedVar, all) {
  // enable the unused_var_check
  FLAGS_enable_unused_var_check = true;

  paddle::framework::InitDevices(true);
  paddle::framework::proto::OpDesc op_desc;
  op_desc.set_type("op_without_unused_var");
  BuildVar("X", {"X"}, op_desc.add_inputs());
  BuildVar("Y", {"Y"}, op_desc.add_outputs());

  paddle::platform::CPUPlace cpu_place;
  paddle::framework::Scope scope;
  auto* x = scope.Var("X")->GetMutable<paddle::framework::LoDTensor>();
  auto* y = scope.Var("Y")->GetMutable<paddle::framework::LoDTensor>();
  x->Resize({32, 64});
  y->Resize({32, 64});
  x->mutable_data<float>(cpu_place);
  y->mutable_data<float>(cpu_place);

  auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
  // should not throw exception
  ASSERT_NO_THROW(op->Run(scope, cpu_place));
  FLAGS_enable_unused_var_check = false;
}