box_coder_op.cu 6.7 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
G
gaoyuan 已提交
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

B
baiyf 已提交
12
#include "paddle/fluid/operators/detection/box_coder_op.h"
D
dzhwinter 已提交
13
#include "paddle/fluid/platform/cuda_primitives.h"
G
gaoyuan 已提交
14 15 16 17 18 19 20

namespace paddle {
namespace operators {

template <typename T>
__global__ void EncodeCenterSizeKernel(const T* prior_box_data,
                                       const T* prior_box_var_data,
G
gaoyuan 已提交
21 22 23
                                       const T* target_box_data, const int row,
                                       const int col, const int len,
                                       T* output) {
G
gaoyuan 已提交
24 25 26 27 28
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < row * col) {
    const int row_idx = idx / col;
    const int col_idx = idx % col;
    T prior_box_width =
G
gaoyuan 已提交
29
        prior_box_data[col_idx * len + 2] - prior_box_data[col_idx * len];
G
gaoyuan 已提交
30
    T prior_box_height =
G
gaoyuan 已提交
31
        prior_box_data[col_idx * len + 3] - prior_box_data[col_idx * len + 1];
G
gaoyuan 已提交
32
    T prior_box_center_x =
G
gaoyuan 已提交
33 34 35 36
        (prior_box_data[col_idx * len + 2] + prior_box_data[col_idx * len]) / 2;
    T prior_box_center_y = (prior_box_data[col_idx * len + 3] +
                            prior_box_data[col_idx * len + 1]) /
                           2;
G
gaoyuan 已提交
37 38

    T target_box_center_x =
G
gaoyuan 已提交
39
        (target_box_data[row_idx * len + 2] + target_box_data[row_idx * len]) /
G
gaoyuan 已提交
40
        2;
G
gaoyuan 已提交
41 42 43
    T target_box_center_y = (target_box_data[row_idx * len + 3] +
                             target_box_data[row_idx * len + 1]) /
                            2;
G
gaoyuan 已提交
44
    T target_box_width =
G
gaoyuan 已提交
45
        target_box_data[row_idx * len + 2] - target_box_data[row_idx * len];
G
gaoyuan 已提交
46
    T target_box_height =
G
gaoyuan 已提交
47
        target_box_data[row_idx * len + 3] - target_box_data[row_idx * len + 1];
G
gaoyuan 已提交
48

G
gaoyuan 已提交
49 50 51 52 53 54 55 56 57
    output[idx * len] = (target_box_center_x - prior_box_center_x) /
                        prior_box_width / prior_box_var_data[col_idx * len];
    output[idx * len + 1] = (target_box_center_y - prior_box_center_y) /
                            prior_box_height /
                            prior_box_var_data[col_idx * len + 1];
    output[idx * len + 2] = log(fabs(target_box_width / prior_box_width)) /
                            prior_box_var_data[col_idx * len + 2];
    output[idx * len + 3] = log(fabs(target_box_height / prior_box_height)) /
                            prior_box_var_data[col_idx * len + 3];
G
gaoyuan 已提交
58 59 60 61 62 63
  }
}

template <typename T>
__global__ void DecodeCenterSizeKernel(const T* prior_box_data,
                                       const T* prior_box_var_data,
G
gaoyuan 已提交
64 65 66
                                       const T* target_box_data, const int row,
                                       const int col, const int len,
                                       T* output) {
G
gaoyuan 已提交
67 68 69 70
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < row * col) {
    const int col_idx = idx % col;
    T prior_box_width =
G
gaoyuan 已提交
71
        prior_box_data[col_idx * len + 2] - prior_box_data[col_idx * len];
G
gaoyuan 已提交
72
    T prior_box_height =
G
gaoyuan 已提交
73
        prior_box_data[col_idx * len + 3] - prior_box_data[col_idx * len + 1];
G
gaoyuan 已提交
74
    T prior_box_center_x =
G
gaoyuan 已提交
75 76 77 78
        (prior_box_data[col_idx * len + 2] + prior_box_data[col_idx * len]) / 2;
    T prior_box_center_y = (prior_box_data[col_idx * len + 3] +
                            prior_box_data[col_idx * len + 1]) /
                           2;
G
gaoyuan 已提交
79

G
gaoyuan 已提交
80
    T target_box_width = exp(prior_box_var_data[col_idx * len + 2] *
Y
Yuan Gao 已提交
81
                             target_box_data[idx * len + 2]) *
G
gaoyuan 已提交
82
                         prior_box_width;
G
gaoyuan 已提交
83
    T target_box_height = exp(prior_box_var_data[col_idx * len + 3] *
Y
Yuan Gao 已提交
84
                              target_box_data[idx * len + 3]) *
G
gaoyuan 已提交
85
                          prior_box_height;
G
gaoyuan 已提交
86
    T target_box_center_x = prior_box_var_data[col_idx * len] *
Y
Yuan Gao 已提交
87
                                target_box_data[idx * len] * prior_box_width +
G
gaoyuan 已提交
88
                            prior_box_center_x;
G
gaoyuan 已提交
89
    T target_box_center_y = prior_box_var_data[col_idx * len + 1] *
Y
Yuan Gao 已提交
90
                                target_box_data[idx * len + 1] *
G
gaoyuan 已提交
91 92 93
                                prior_box_height +
                            prior_box_center_y;

G
gaoyuan 已提交
94 95 96 97
    output[idx * len] = target_box_center_x - target_box_width / 2;
    output[idx * len + 1] = target_box_center_y - target_box_height / 2;
    output[idx * len + 2] = target_box_center_x + target_box_width / 2;
    output[idx * len + 3] = target_box_center_y + target_box_height / 2;
G
gaoyuan 已提交
98 99 100 101 102 103 104 105 106 107 108 109
  }
}

template <typename T>
class BoxCoderCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(context.GetPlace()),
                   "This kernel only runs on GPU device.");
    auto* prior_box = context.Input<framework::Tensor>("PriorBox");
    auto* prior_box_var = context.Input<framework::Tensor>("PriorBoxVar");
    auto* target_box = context.Input<framework::LoDTensor>("TargetBox");
G
gaoyuan 已提交
110
    auto* output_box = context.Output<framework::Tensor>("OutputBox");
G
gaoyuan 已提交
111 112

    if (target_box->lod().size()) {
G
gaoyuan 已提交
113
      PADDLE_ENFORCE_EQ(target_box->lod().size(), 1,
G
gaoyuan 已提交
114 115 116 117
                        "Only support 1 level of LoD.");
    }
    auto row = target_box->dims()[0];
    auto col = prior_box->dims()[0];
G
gaoyuan 已提交
118
    auto len = prior_box->dims()[1];
G
gaoyuan 已提交
119 120 121 122 123 124 125 126
    int block = 512;
    int grid = (row * col + block - 1) / block;
    auto& device_ctx = context.cuda_device_context();

    const T* prior_box_data = prior_box->data<T>();
    const T* prior_box_var_data = prior_box_var->data<T>();
    const T* target_box_data = target_box->data<T>();

G
gaoyuan 已提交
127
    output_box->mutable_data<T>({row, col, len}, context.GetPlace());
G
gaoyuan 已提交
128 129 130 131 132
    T* output = output_box->data<T>();

    auto code_type = GetBoxCodeType(context.Attr<std::string>("code_type"));
    if (code_type == BoxCodeType::kEncodeCenterSize) {
      EncodeCenterSizeKernel<T><<<grid, block, 0, device_ctx.stream()>>>(
G
gaoyuan 已提交
133
          prior_box_data, prior_box_var_data, target_box_data, row, col, len,
G
gaoyuan 已提交
134 135 136
          output);
    } else if (code_type == BoxCodeType::kDecodeCenterSize) {
      DecodeCenterSizeKernel<T><<<grid, block, 0, device_ctx.stream()>>>(
G
gaoyuan 已提交
137
          prior_box_data, prior_box_var_data, target_box_data, row, col, len,
G
gaoyuan 已提交
138 139 140 141 142 143 144 145 146 147 148
          output);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(box_coder, ops::BoxCoderCUDAKernel<float>,
                        ops::BoxCoderCUDAKernel<double>);