sum_op.h 3.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
Q
QI JUN 已提交
15 16
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/selected_rows_functor.h"
17 18 19 20 21

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
Q
QI JUN 已提交
22 23
using SelectedRows = framework::SelectedRows;
using LoDTensor = framework::LoDTensor;
24 25 26 27 28
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

template <typename Place, typename T>
Y
Yu Yang 已提交
29
class SumKernel : public framework::OpKernel<T> {
30 31
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Q
QI JUN 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    auto& in_vars = context.MultiInputVar("X");
    int N = in_vars.size();
    auto out_var = context.OutputVar("Out");

    if (out_var->IsType<framework::LoDTensor>()) {
      auto* out = context.Output<Tensor>("Out");
      // Runtime InferShape
      for (int i = 0; i < N; i++) {
        if (in_vars[i]->IsType<framework::LoDTensor>()) {
          out->Resize(in_vars[i]->Get<framework::LoDTensor>().dims());
          break;
        }
      }
      out->mutable_data<T>(context.GetPlace());

      auto result = EigenVector<T>::Flatten(*out);

      math::SetConstant<Place, T> constant_functor;
      constant_functor(context.device_context(), out, 0.0);

      math::SelectedRowsAddToTensor<Place, T> functor;
      auto place = context.GetEigenDevice<Place>();
      for (int i = 0; i < N; i++) {
        if (in_vars[i]->IsType<framework::LoDTensor>()) {
          auto& in_t = in_vars[i]->Get<framework::LoDTensor>();
          auto in = EigenVector<T>::Flatten(in_t);
          result.device(place) = result + in;
        } else if (in_vars[i]->IsType<framework::SelectedRows>()) {
          auto& in_t = in_vars[i]->Get<framework::SelectedRows>();
          functor(context.device_context(), in_t, out);
        } else {
          PADDLE_THROW("Variable type must be LoDTensor/SelectedRows.");
        }
      }
    } else if (out_var->IsType<framework::SelectedRows>()) {
      auto* out = context.Output<SelectedRows>("Out");
      auto* out_value = out->mutable_value();

      // Runtime InferShape
      size_t first_dim = 0;
      for (int i = 0; i < N; i++) {
        first_dim += in_vars[i]->Get<SelectedRows>().rows().size();
      }
      auto in_dim = in_vars[0]->Get<SelectedRows>().value().dims();

      auto in_dim_vec = framework::vectorize(in_dim);
      in_dim_vec[0] = static_cast<int64_t>(first_dim);

      out_value->Resize(framework::make_ddim(in_dim_vec));

      out_value->mutable_data<T>(context.GetPlace());

      math::SelectedRowsAddTo<Place, T> functor;

      int64_t offset = 0;
      for (int i = 0; i < N; i++) {
        PADDLE_ENFORCE_EQ(out->height(),
                          in_vars[i]->Get<SelectedRows>().height())
        functor(context.device_context(), in_vars[i]->Get<SelectedRows>(),
                offset, out);
        offset += in_vars[i]->Get<SelectedRows>().value().numel();
      }
94 95 96 97 98 99
    }
  }
};

}  // namespace operators
}  // namespace paddle