elementwise_pow_op.h 3.7 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <cmath>
15
#include <type_traits>
W
wanghuancoder 已提交
16

17
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
Q
Qiao Longfei 已提交
18 19 20 21 22 23

namespace paddle {
namespace operators {

template <typename T>
struct PowFunctor {
24
  inline HOSTDEVICE T operator()(T a, T b) const {
J
joejiong 已提交
25 26
// TODO(wujionghao): A potential speed improvement is supporting different
// types in C++.
27
#if defined(__CUDA_ARCH__) || defined(__HIPCC__)
J
joejiong 已提交
28 29 30 31
    // On CUDAPlace, std::pow(3, 1) calls pow(float, float), and
    // it will return a float number like 2.99... , which floor to 2
    // when cast to int by default and it is wrong.
    // Use llrint to cast it to the nearest integer, which is 3.
32
    if (std::is_integral<T>::value) {
33 34
      return std::llrint(
          std::pow(static_cast<double>(a), static_cast<double>(b)));
35
    }
J
joejiong 已提交
36
#endif
37 38
    return std::pow(a, b);
  }
Q
Qiao Longfei 已提交
39 40 41 42 43 44
};

template <typename DeviceContext, typename T>
class ElementwisePowKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
45
    using Tensor = framework::LoDTensor;
C
chengduoZH 已提交
46
    auto* x = ctx.Input<Tensor>("X");
47 48 49 50
    PADDLE_ENFORCE_EQ(x != nullptr, true,
                      platform::errors::NotFound(
                          "Cannot get input Variable X, Variable name = %s",
                          ctx.InputName("X")));
C
chengduoZH 已提交
51 52 53 54
    auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");
    z->mutable_data<T>(ctx.GetPlace());
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
55 56
    ElementwiseComputeEx<PowFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          PowFunctor<T>(), z);
Q
Qiao Longfei 已提交
57 58 59
  }
};

60 61 62
template <typename T>
struct PowGradDX {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
63 64 65 66 67 68
#if defined(__CUDA_ARCH__) || defined(__HIPCC__)
    if (std::is_integral<T>::value) {
      return dout * y *
             std::pow(static_cast<double>(x), static_cast<double>(y - 1));
    }
#endif
69 70 71 72
    return dout * y * std::pow(x, y - 1);
  }
};

73
template <typename T, typename Enable = void>
74 75
struct PowGradDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
76 77 78 79 80 81
#if defined(__CUDA_ARCH__) || defined(__HIPCC__)
    if (std::is_integral<T>::value) {
      return dout * std::log(static_cast<double>(x)) *
             std::pow(static_cast<double>(x), static_cast<double>(y));
    }
#endif
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    return dout * std::log(x) * std::pow(x, y);
  }
};

template <typename DeviceContext, typename T>
class ElementwisePowGradKernel : public ElemwiseGradKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    ElemwiseGradKernel<T>::Compute(ctx);
    using Tensor = framework::Tensor;
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* out = dout;
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
    ElemwiseGradCompute<DeviceContext, T, PowGradDX<T>, PowGradDY<T>>(
        ctx, *x, *y, *out, *dout, axis, dx, dy, PowGradDX<T>(), PowGradDY<T>());
  }
};
Q
Qiao Longfei 已提交
103 104
}  // namespace operators
}  // namespace paddle