grad_op_desc_maker.h 6.4 KB
Newer Older
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16 17
#include <string>
#include <unordered_set>
Y
Yu Yang 已提交
18
#include <vector>
19 20 21 22 23 24
#include "paddle/framework/op_desc.h"
#include "paddle/framework/operator.h"

namespace paddle {
namespace framework {

25 26 27 28 29 30 31 32
/*
  This functor class is responsible for creating the gradient ops for the given
  operator fwd_op. After it is called (through operator()), the pairs of
  (gradient variable, corresponding input variable of fwd_op) will be added to
  grad_to_var. If an input variable of fwd_op is contained in no_grad_set, its
  gradient varialbe will be ignored or kEmptyVarName depending on the template
  argument DropEmptyIG in the derived classes.
 */
33 34
class GradOpDescMakerBase {
 public:
35
  explicit GradOpDescMakerBase(
Y
Yu Yang 已提交
36
      const OpDesc& fwd_op, const std::unordered_set<std::string>& no_grad_set,
Y
Yu Yang 已提交
37
      std::unordered_map<std::string, std::string>* grad_to_var,
Y
Yu Yang 已提交
38
      const std::vector<BlockDesc*>& grad_block = std::vector<BlockDesc*>())
Y
Yu Yang 已提交
39 40 41 42
      : fwd_op_(fwd_op),
        no_grad_set_(no_grad_set),
        grad_to_var_(grad_to_var),
        grad_block_(grad_block) {}
43 44

  virtual ~GradOpDescMakerBase() = default;
Y
Yu Yang 已提交
45
  virtual std::vector<std::unique_ptr<OpDesc>> operator()() const = 0;
46 47

 protected:
48 49
  std::vector<std::string> InputGrad(const std::string& name,
                                     bool drop_empty_grad = true) const {
50
    std::vector<std::string> ret_val;
51
    auto var_names = this->Input(name);
52
    ret_val.reserve(var_names.size());
53 54 55 56 57 58 59 60 61 62 63
    std::transform(var_names.begin(), var_names.end(),
                   std::back_inserter(ret_val),
                   [this](const std::string& fwd_var_name) -> std::string {
                     auto g_name = GradVarName(fwd_var_name);
                     if (no_grad_set_.count(g_name)) {
                       return kEmptyVarName;
                     } else {
                       (*this->grad_to_var_)[g_name] = fwd_var_name;
                       return g_name;
                     }
                   });
64 65 66
    if (!drop_empty_grad) {
      return ret_val;
    }
67 68 69 70 71 72 73 74 75 76
    PADDLE_ENFORCE_LE(var_names.size(), 1UL,
                      "BUG from operator developer:"
                      " for input argument with a list of variables, "
                      " drop_empty_grad is not allowed because it makes"
                      " the correspondence bewteen a variable and its gradient"
                      " ambiguous. Use REGISTER_OP_EX to register the op"
                      " or call InputGrad(?,false) in GradOpDescMaker."
                      " Op type %s",
                      fwd_op_.Type());

77 78 79 80 81 82
    std::vector<std::string> dropped_ret_val;
    dropped_ret_val.reserve(ret_val.size());
    std::copy_if(ret_val.begin(), ret_val.end(),
                 std::back_inserter(dropped_ret_val),
                 [](const std::string& str) { return str != kEmptyVarName; });
    return dropped_ret_val;
83 84 85
  }

  std::vector<std::string> OutputGrad(const std::string& name) const {
86 87 88 89
    std::vector<std::string> ret_val;
    auto onames = this->Output(name);
    ret_val.reserve(onames.size());
    std::transform(onames.begin(), onames.end(), std::back_inserter(ret_val),
90 91 92 93 94
                   [this](const std::string& fwd_var_name) -> std::string {
                     auto g_name = GradVarName(fwd_var_name);
                     (*this->grad_to_var_)[g_name] = fwd_var_name;
                     return g_name;
                   });
95
    return ret_val;
96 97
  }

Y
Yu Yang 已提交
98 99
  std::vector<std::string> InputNames() const {
    return this->fwd_op_.InputNames();
100 101
  }

Y
Yu Yang 已提交
102 103
  std::vector<std::string> OutputNames() const {
    return this->fwd_op_.OutputNames();
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
  }

  std::vector<std::string> Input(const std::string& name) const {
    return fwd_op_.Input(name);
  }

  std::vector<std::string> Output(const std::string& name) const {
    return fwd_op_.Output(name);
  }

  const std::unordered_map<std::string, Attribute>& Attrs() const {
    return fwd_op_.GetAttrMap();
  }

  const Attribute& GetAttr(const std::string& name) const {
    auto& map = fwd_op_.GetAttrMap();
    auto it = map.find(name);
    PADDLE_ENFORCE(it != map.end(), "Cannot find attribute %s", name);
    return it->second;
  }

  std::string ForwardOpType() const { return this->fwd_op_.Type(); }

 private:
Y
Yu Yang 已提交
128
  const OpDesc& fwd_op_;
129
  const std::unordered_set<std::string>& no_grad_set_;
130
  std::unordered_map<std::string, std::string>* grad_to_var_;
Y
Yu Yang 已提交
131 132

 protected:
Y
Yu Yang 已提交
133
  std::vector<BlockDesc*> grad_block_;
134 135 136 137
};

class SingleGradOpDescMaker : public GradOpDescMakerBase {
 public:
Y
Yu Yang 已提交
138 139
  using GradOpDescMakerBase::GradOpDescMakerBase;

Y
Yu Yang 已提交
140 141
  std::vector<std::unique_ptr<OpDesc>> operator()() const {
    std::vector<std::unique_ptr<OpDesc>> retv;
Y
Yu Yang 已提交
142 143 144
    retv.emplace_back(this->Apply());
    return retv;
  }
145 146

 protected:
Y
Yu Yang 已提交
147
  virtual std::unique_ptr<OpDesc> Apply() const = 0;
148 149
};

150
template <bool DropEmptyIG = true>
151
class DefaultGradOpDescMaker : public SingleGradOpDescMaker {
Y
Yu Yang 已提交
152 153 154
 public:
  using SingleGradOpDescMaker::SingleGradOpDescMaker;

155
 protected:
Y
Yu Yang 已提交
156 157
  virtual std::unique_ptr<OpDesc> Apply() const {
    auto* grad = new OpDesc();
Y
Yu Yang 已提交
158
    grad->SetType(this->GradOpType());
159

Y
Yu Yang 已提交
160
    for (auto& input_param : this->InputNames()) {
Y
Yu Yang 已提交
161
      grad->SetInput(input_param, this->Input(input_param));
162 163
      grad->SetOutput(GradVarName(input_param),
                      this->InputGrad(input_param, DropEmptyIG));
164 165
    }

Y
Yu Yang 已提交
166
    for (auto& output_param : this->OutputNames()) {
Y
Yu Yang 已提交
167 168
      grad->SetInput(output_param, this->Output(output_param));
      grad->SetInput(GradVarName(output_param), this->OutputGrad(output_param));
169 170
    }

Y
Yu Yang 已提交
171
    grad->SetAttrMap(this->Attrs());
172

Y
Yu Yang 已提交
173
    return std::unique_ptr<OpDesc>(grad);
174 175 176 177 178 179 180
  }

  virtual std::string GradOpType() const {
    return this->ForwardOpType() + "_grad";
  }
};

Y
Yu Yang 已提交
181 182 183
class EmptyGradOpMaker : public GradOpDescMakerBase {
 public:
  using GradOpDescMakerBase::GradOpDescMakerBase;
Y
Yu Yang 已提交
184
  std::vector<std::unique_ptr<OpDesc>> operator()() const override {
Y
Yu Yang 已提交
185 186 187 188
    return {};
  }
};

189 190
}  // namespace framework
}  // namespace paddle