cvm_op.cc 6.4 KB
Newer Older
H
fix doc  
heqiaozhi 已提交
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
H
heqiaozhi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/cvm_op.h"
H
heqiaozhi 已提交
16
#include <memory>
H
heqiaozhi 已提交
17 18 19 20 21 22 23 24 25 26 27 28
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class CVMOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
29 30
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "CVM");
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "CVM");
H
heqiaozhi 已提交
31 32

    auto x_dims = ctx->GetInputDim("X");
33 34 35 36
    PADDLE_ENFORCE_EQ(
        x_dims.size(), 2UL,
        platform::errors::InvalidArgument(
            "Input(X)'s rank should be 2, but got %d", x_dims.size()));
H
heqiaozhi 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

    if (ctx->Attrs().Get<bool>("use_cvm")) {
      ctx->SetOutputDim("Y", {x_dims[0], x_dims[1]});
    } else {
      ctx->SetOutputDim("Y", {x_dims[0], x_dims[1] - 2});
    }
    ctx->ShareLoD("X", /*->*/ "Y");
  }

 protected:
  // Explicitly set that the data type of computation kernel of
  // cvm
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
52 53
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
H
hutuxian 已提交
54
        ctx.device_context());
H
heqiaozhi 已提交
55 56 57 58 59 60 61 62
  }
};

class CVMGradientOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
63 64 65 66 67 68
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "CVMGradient");
    OP_INOUT_CHECK(ctx->HasInput("CVM"), "Input", "CVM", "CVMGradient");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input",
                   framework::GradVarName("Y"), "CVMGradient");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                   framework::GradVarName("X"), "CVMGradient");
H
heqiaozhi 已提交
69 70 71 72

    auto x_dims = ctx->GetInputDim("X");
    auto cvm_dims = ctx->GetInputDim("CVM");
    auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
73 74 75 76
    PADDLE_ENFORCE_EQ(
        x_dims.size(), 2,
        platform::errors::InvalidArgument(
            "Expect Input(X)'s rank == 2, but got %d", x_dims.size()));
77 78
    PADDLE_ENFORCE_EQ(
        dy_dims.size(), 2,
79 80
        platform::errors::InvalidArgument(
            "Expect Input(X)'s rank == 2, but got %d", dy_dims.size()));
81 82
    PADDLE_ENFORCE_EQ(
        cvm_dims.size(), 2,
83 84
        platform::errors::InvalidArgument(
            "Expect Input(X)'s rank == 2, but got %d", cvm_dims.size()));
85 86 87 88 89

    PADDLE_ENFORCE_EQ(
        x_dims[0], dy_dims[0],
        platform::errors::InvalidArgument(
            "The 1st dimension of Input(X) and Input(Y@Grad) should "
90 91
            "be equal, X is %d, Y@Grad is %d",
            x_dims[0], dy_dims[0]));
92 93 94 95 96

    PADDLE_ENFORCE_EQ(
        cvm_dims[1], 2,
        platform::errors::InvalidArgument(
            "When Attr(soft_label) == false, the 2nd dimension of "
97
            "Input(CVM) should be 2, but got %d cvm_dims[1]"));
H
heqiaozhi 已提交
98 99 100 101 102 103 104 105 106 107
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("X", framework::GradVarName("X"));
  }

 protected:
  // Explicitly set that the data type of computation kernel of
  // cvm
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
108 109 110
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Y")),
                                   ctx.device_context());
H
heqiaozhi 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
  }
};

class CVMOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(LodTensor, default LodTensor<float>), a 2-D tensor with shape "
             "[N x D],"
             " where N is the batch size and D is the emebdding dim. ");
    AddInput("CVM",
             "(Tensor),  a 2-D Tensor with shape [N x 2], where N is the batch "
             "size, 2 is show and click.");
    AddOutput("Y",
              "(LodTensor, default LodTensor<float>), a 2-D tensor with shape "
              "[N x K].");
    AddAttr<bool>("use_cvm", "bool, use cvm or not").SetDefault(true);
    AddComment(R"DOC(
CVM Operator.
H
add doc  
heqiaozhi 已提交
130

H
add doc  
heqiaozhi 已提交
131
      We assume that input X is a embedding vector with cvm_feature(show and click), which shape is [N * D] (D is 2(cvm_feature) + embedding dim, N is batch_size)
H
add doc  
heqiaozhi 已提交
132 133
      if use_cvm is True, we will log(cvm_feature), and output shape is [N * D].
      if use_cvm is False, we will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
134 135 136 137

)DOC");
  }
};
H
heqiaozhi 已提交
138

H
hong 已提交
139 140
template <typename T>
class CVMGradOpMaker : public framework::SingleGradOpMaker<T> {
H
heqiaozhi 已提交
141
 public:
H
hong 已提交
142
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
H
heqiaozhi 已提交
143 144

 protected:
145
  void Apply(GradOpPtr<T> op) const override {
H
heqiaozhi 已提交
146
    op->SetType("cvm_grad");
H
hong 已提交
147
    op->SetInput("CVM", this->Input("CVM"));
148
    op->SetInput("X", this->Input("X"));
H
hong 已提交
149 150 151
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
H
heqiaozhi 已提交
152 153
  }
};
H
heqiaozhi 已提交
154

155 156
DECLARE_NO_NEED_BUFFER_VARS_INFERER(CVMNoNeedBufferVarInferer, "CVM");
DECLARE_NO_NEED_BUFFER_VARS_INFERER(CVMGradNoNeedBufferVarInferer, "X");
157

H
heqiaozhi 已提交
158 159 160 161
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
162 163
REGISTER_OPERATOR(cvm, ops::CVMOp, ops::CVMOpMaker,
                  ops::CVMGradOpMaker<paddle::framework::OpDesc>,
164
                  ops::CVMGradOpMaker<paddle::imperative::OpBase>,
165
                  ops::CVMNoNeedBufferVarInferer);
H
heqiaozhi 已提交
166

167
REGISTER_OPERATOR(cvm_grad, ops::CVMGradientOp,
168
                  ops::CVMGradNoNeedBufferVarInferer);
H
heqiaozhi 已提交
169 170 171 172 173

REGISTER_OP_CPU_KERNEL(cvm, ops::CVMOpKernel<float>, ops::CVMOpKernel<double>);

REGISTER_OP_CPU_KERNEL(cvm_grad, ops::CVMGradOpKernel<float>,
                       ops::CVMGradOpKernel<double>);