checkpoint.py 11.7 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import collections
17
import functools
18 19 20 21 22 23 24 25 26 27
from ..framework import (
    Variable,
    default_main_program,
    dygraph_only,
    Parameter,
    ParamBase,
    _varbase_creator,
    _dygraph_tracer,
    EagerParamBase,
)
28 29 30
import pickle
from . import learning_rate_scheduler
import warnings
H
hong 已提交
31
from .. import core
32
from .base import guard
33
from paddle.jit.api import _SaveLoadConfig
34
from paddle.jit.translated_layer import (
35 36 37
    _construct_program_holders,
    _construct_params_and_buffers,
)
38

H
hong 已提交
39 40 41 42
__all__ = [
    'save_dygraph',
    'load_dygraph',
]
43 44


45 46 47 48 49 50 51 52
def _parse_load_config(configs):
    supported_configs = ['model_filename', 'params_filename', 'keep_name_table']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.fluid.load_dygraph` is not supported."
53 54
                % (key)
            )
55

56 57 58 59 60
    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)
    inner_config.keep_name_table = configs.get('keep_name_table', None)
61

62
    return inner_config
63 64


H
hong 已提交
65 66 67
@dygraph_only
def save_dygraph(state_dict, model_path):
    '''
68 69
    :api_attr: imperative

H
hong 已提交
70
    Save Layer's state_dict to disk. This will generate a file with suffix ".pdparams"
71

H
hong 已提交
72
    The state_dict is get from Layers.state_dict function
73

74
    Args:
H
hong 已提交
75 76
        state_dict(dict) : The state dict to be saved.
        model_path(str) : the file prefix to save the state_dict. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised
77 78

    Returns:
L
lujun 已提交
79
        None
80 81

    Examples:
H
hong 已提交
82 83 84
        .. code-block:: python

            import paddle.fluid as fluid
85
            import paddle
H
hong 已提交
86 87

            with fluid.dygraph.guard():
88
                emb = paddle.nn.Embedding(10, 10)
H
hong 已提交
89 90 91 92

                state_dict = emb.state_dict()
                fluid.save_dygraph( state_dict, "paddle_dy")

93 94
                adam = fluid.optimizer.Adam( learning_rate = fluid.layers.noam_decay( 100, 10000),
                                             parameter_list = emb.parameters() )
H
hong 已提交
95 96 97 98 99 100 101

                state_dict = adam.state_dict()
                fluid.save_dygraph( state_dict, "paddle_dy")

    '''

    base_name = os.path.basename(model_path)
102 103 104
    assert (
        base_name != ""
    ), "The input model_path MUST be format of dirname/filename [dirname\\filename in Windows system], but received filename is empty string."
H
hong 已提交
105 106 107 108

    suffix = ".pdparams"
    assert len(state_dict) > 0, "state_dict is empty, no need to save"

109
    param_num = 0
H
hong 已提交
110
    for k, v in state_dict.items():
111
        if isinstance(v, (ParamBase, EagerParamBase)):
112 113 114 115
            param_num += 1

    if param_num == 0:
        suffix = ".pdopt"
H
hong 已提交
116

H
hong 已提交
117 118 119
    model_dict = {}
    name_table = {}
    for k, v in state_dict.items():
120
        if isinstance(v, (Variable, core.VarBase, core.eager.Tensor)):
H
hong 已提交
121
            model_dict[k] = v.numpy()
122
            name_table[k] = v.name
H
hong 已提交
123 124 125 126
        else:
            model_dict[k] = v
    model_dict["StructuredToParameterName@@"] = name_table

127 128 129 130 131 132
    file_name = model_path + suffix
    dir_name = os.path.dirname(file_name)
    if dir_name and not os.path.exists(dir_name):
        os.makedirs(dir_name)

    with open(file_name, 'wb') as f:
133
        pickle.dump(model_dict, f, protocol=2)
H
hong 已提交
134 135


136
# NOTE(chenweihang): load_dygraph will deprecated in future, we don't
137
# support new loading features for it
138 139
# TODO(qingqing01): remove dygraph_only to support loading static model.
# maybe need to unify the loading interface after 2.0 API is ready.
140
# @dygraph_only
141
def load_dygraph(model_path, **configs):
H
hong 已提交
142
    '''
143
    :api_attr: imperative
144

145 146 147
    Load parameter state dict from disk.

    .. note::
148 149 150
        Due to some historical reasons, if you load ``state_dict`` from the saved
        result of `paddle.static.save_inference_model`, the structured variable name
        will cannot be restored. You need to set the argument `use_structured_name=False`
151
        when using `Layer.set_state_dict` later.
H
hong 已提交
152 153

    Args:
154 155 156
        model_path(str) : The file prefix store the state_dict.
            (The path should Not contain suffix '.pdparams')
        **configs (dict, optional): Other load configuration options for compatibility. We do not
157 158
            recommend using these configurations, if not necessary, DO NOT use them. Default None.
            The following options are currently supported:
159 160 161
            (1) model_filename (str): The inference model file name of the paddle 1.x ``save_inference_model``
            save format. Default file name is :code:`__model__` .
            (2) params_filename (str): The persistable variables file name of the paddle 1.x ``save_inference_model``
162
            save format. No default file name, save variables separately by default.
H
hong 已提交
163 164 165

    Returns:
        state_dict(dict) : the dict store the state_dict
L
lujun 已提交
166

H
hong 已提交
167
    Examples:
168
        .. code-block:: python
L
lujun 已提交
169

170
            import paddle
171 172
            import paddle.fluid as fluid

173
            paddle.disable_static()
H
hong 已提交
174

175
            emb = paddle.nn.Embedding(10, 10)
H
hong 已提交
176

177
            state_dict = emb.state_dict()
178
            fluid.save_dygraph(state_dict, "paddle_dy")
H
hong 已提交
179

180
            scheduler = paddle.optimizer.lr.NoamDecay(
181 182 183 184 185
                d_model=0.01, warmup_steps=100, verbose=True)
            adam = paddle.optimizer.Adam(
                learning_rate=scheduler,
                parameters=emb.parameters())
            state_dict = adam.state_dict()
186
            fluid.save_dygraph(state_dict, "paddle_dy")
H
hong 已提交
187

188
            para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
189 190
    '''
    # deal with argument `model_path`
191 192 193 194 195 196
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]

197
    para_dict = None
H
hong 已提交
198
    opti_dict = None
199
    params_file_path = model_prefix + ".pdparams"
200
    opti_file_path = model_prefix + ".pdopt"
201

202
    # deal with argument `config`
203
    config = _parse_load_config(configs)
204

205
    if os.path.exists(params_file_path) or os.path.exists(opti_file_path):
206
        # Load state dict by `save_dygraph` save format
M
MRXLT 已提交
207
        para_dict = {}
208 209
        if os.path.exists(params_file_path):
            with open(params_file_path, 'rb') as f:
T
tianshuo78520a 已提交
210
                para_dict = pickle.load(f, encoding='latin1')
211

212 213 214 215
        if (
            not config.keep_name_table
            and "StructuredToParameterName@@" in para_dict
        ):
216 217 218 219
            del para_dict["StructuredToParameterName@@"]

        if os.path.exists(opti_file_path):
            with open(opti_file_path, 'rb') as f:
T
tianshuo78520a 已提交
220
                opti_dict = pickle.load(f, encoding='latin1')
221 222 223
    else:
        # check model path
        if not os.path.isdir(model_prefix):
224 225 226
            raise ValueError(
                "Model saved directory '%s' is not exists." % model_prefix
            )
227 228 229 230 231 232 233 234 235 236 237

        # check whether model file exists
        if config.model_filename is None:
            model_filename = '__model__'
        else:
            model_filename = config.model_filename
        model_file_path = os.path.join(model_path, model_filename)

        if os.path.exists(model_file_path):
            # Load state dict by `jit.save/io.save_inference_model` save format
            # NOTE(chenweihang): [ Compatibility of save_inference_model save format ]
238 239 240
            # The model saved by `save_inference_model` does not completely correspond to
            # the information required by the `state_dict` under the dygraph.
            # `save_inference_model` not save structured name, we need to remind
241
            # the user to configure the `use_structured_name` argument when `set_state_dict`
242
            # NOTE(chenweihang): `jit.save` doesn't save optimizer state
243 244

            # 1. load program desc & construct _ProgramHolder
245 246 247
            programs = _construct_program_holders(
                model_path, config.model_filename
            )
248 249 250 251 252 253 254

            # 2. load layer parameters & buffers
            with guard():
                persistable_var_dict = _construct_params_and_buffers(
                    model_prefix,
                    programs,
                    config.params_filename,
255 256
                    append_suffix=False,
                )
257 258 259 260 261 262

                # 3. construct state_dict
                para_dict = dict()
                for var_name in persistable_var_dict:
                    para_dict[var_name] = persistable_var_dict[var_name].numpy()

263 264 265
                # if *.info exists, we can recover structured_name
                var_info_filename = str(config.params_filename) + ".info"
                var_info_path = os.path.join(model_prefix, var_info_filename)
266 267 268 269 270 271
                if os.path.exists(var_info_path):
                    with open(var_info_path, 'rb') as f:
                        extra_var_info = pickle.load(f)
                    structured_para_dict = dict()
                    for var_name in para_dict:
                        structured_name = extra_var_info[var_name].get(
272 273 274 275 276 277
                            'structured_name', None
                        )
                        assert structured_name is not None, (
                            "Cannot find saved variable (%s)'s structured name in saved model."
                            % var_name
                        )
278
                        structured_para_dict[structured_name] = para_dict[
279 280
                            var_name
                        ]
281 282 283
                    para_dict = structured_para_dict
        else:
            # load state dict by `io.save_params/persistables` save format
284
            # TODO(chenweihang): [ Now only supports loading parameters separately ]
285
            # If users save all parameters as one file, the [ variable.name -> variable ]
286
            # mapping info will lost, so users need to give variable list, but users build
287
            # variable list in dygraph mode is difficult, we recommend users to use
288
            # paddle.static.load_program_state in this case
289

290
            # Try to load all the files in the directory in VarBase format,
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
            # the file name is used as the name of VarBase
            load_var_list = []

            # 1. load file names
            var_name_list = []
            for root, _, files in os.walk(model_path):
                for filename in files:
                    file_path = os.path.join(root, filename)
                    tmp_var_name = os.path.relpath(file_path, model_path)
                    var_name = tmp_var_name.replace("\\", "/")
                    var_name_list.append(var_name)

            # 2. create and load VarBase
            with guard():
                for name in var_name_list:
                    new_var = _varbase_creator(name=name, persistable=True)
                    _dygraph_tracer().trace_op(
                        type='load',
                        inputs={},
                        outputs={'Out': new_var},
311 312
                        attrs={'file_path': os.path.join(model_path, name)},
                    )
313 314 315 316 317 318
                    load_var_list.append(new_var)

            # 3. construct state_dict
            para_dict = dict()
            for var in load_var_list:
                para_dict[var.name] = var.numpy()
H
hong 已提交
319 320

    return para_dict, opti_dict