auto_cast.py 23.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18
from paddle.fluid.wrapped_decorator import (
    signature_safe_contextmanager,
    wrap_decorator,
)
19 20
from paddle.fluid import core
import contextlib
21 22 23 24 25 26 27 28 29
from paddle.fluid.framework import (
    Variable,
    OpProtoHolder,
    Parameter,
    _dygraph_tracer,
    dygraph_only,
    set_flags,
    get_flags,
)
30 31
import warnings
import copy
32 33 34 35
import functools
import paddle
import operator
import types
36

L
Leo Chen 已提交
37 38
AMP_LEVEL = core.AmpLevel

39
__all__ = ['amp_guard', 'amp_decorate']
40 41 42 43 44 45

# The set of ops that support fp16 calculation and are considered numerically-
# safe and performance-critical. These ops are always converted to fp16.
WHITE_LIST = {
    'conv2d',
    'matmul',
L
Leo Chen 已提交
46
    'matmul_v2',
47
    'mul',
C
cc 已提交
48 49
    'fake_quantize_dequantize_abs_max',
    'fake_quantize_dequantize_moving_average_abs_max',
50 51 52 53 54 55 56 57 58 59 60 61 62 63
}

# The set of ops that support fp16 calculation and are considered numerically-
# dangerous and whose effects may also be observed in downstream ops.
BLACK_LIST = {
    'exp',
    'square',
    'log',
    'mean',
    'sum',
    'cos_sim',
    'softmax',
    'softmax_with_cross_entropy',
    'sigmoid_cross_entropy_with_logits',
64
    'c_softmax_with_cross_entropy',
65 66
    'cross_entropy',
    'cross_entropy2',
67 68
    # default fp32 can avoid return inf when the sum value large than 65504
    'reduce_sum',
69 70 71 72 73 74
    # FP16 performance of grad op is worse than that of FP32. Use FP32 by default.
    'linear_interp_v2',
    'nearest_interp_v2',
    'bilinear_interp_v2',
    'bicubic_interp_v2',
    'trilinear_interp_v2',
75 76 77 78 79 80 81 82 83 84 85 86 87 88
}

AMP_RELATED_FLAGS = [
    'FLAGS_cudnn_exhaustive_search',
    'FLAGS_conv_workspace_size_limit',
    'FLAGS_cudnn_batchnorm_spatial_persistent',
]

AMP_RELATED_FLAGS_SETTING = {
    'FLAGS_cudnn_exhaustive_search': 1,
    'FLAGS_conv_workspace_size_limit': 1000,
    'FLAGS_cudnn_batchnorm_spatial_persistent': 1,
}

89
PURE_FP16_WHITE_LIST = set()
90
PURE_FP16_BLACK_LIST = {
91 92 93 94 95 96 97 98 99 100
    'lookup_table',
    'lookup_table_v2',
    'scatter',
    'scatter_grad',
    # FP16 performance of grad op is worse than that of FP32. Use FP32 by default.
    'linear_interp_v2',
    'nearest_interp_v2',
    'bilinear_interp_v2',
    'bicubic_interp_v2',
    'trilinear_interp_v2',
101
}
102

103
BF16_WHITE_LIST = {'conv2d', 'matmul_v2'}
104
BF16_BLACK_LIST = set()
105

106 107
PURE_BF16_WHITE_LIST = set()
PURE_BF16_BLACK_LIST = set()
108

L
Leo Chen 已提交
109 110 111
_g_amp_state_ = None


112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
def low_precision_op_list():
    op_list = paddle.fluid.core.get_low_precision_op_list()
    op_count = 0
    print('<---------------- low precision op list ------------------->')
    print('<---- op name ------|------- op count---------------------->')
    for x in op_list:
        print('  %-18s| %4d' % (x, op_list[x]))
        op_count += 1
    print(
        '<------------- low precision op num:{:5d} ----------------->'.format(
            op_count
        )
    )


L
Leo Chen 已提交
127 128 129 130
def amp_state():
    global _g_amp_state_
    return _g_amp_state_

131

132
# NOTE(zhiqiu): similar as paddle.fluid.contrib.mixed_precision.fp16_lists.AutoMixedPrecisionLists._update_list
133
# The reason why not use AutoMixedPrecisionLists is that custom_black_varnames is not suitable for imperative mode.
134 135 136
def _update_list(
    custom_white_list, custom_black_list, level='O1', dtype='float16'
):
137 138 139
    """
    Update black and white list according to users' custom list.
    """
140 141 142 143 144 145 146
    if dtype == 'float16':
        if level == 'O1':
            _white_list = copy.copy(WHITE_LIST)
            _black_list = copy.copy(BLACK_LIST)
        else:
            _white_list = copy.copy(PURE_FP16_WHITE_LIST)
            _black_list = copy.copy(PURE_FP16_BLACK_LIST)
147
    else:
148 149 150 151 152 153
        if level == 'O1':
            _white_list = copy.copy(BF16_WHITE_LIST)
            _black_list = copy.copy(BF16_BLACK_LIST)
        else:
            _white_list = copy.copy(PURE_BF16_WHITE_LIST)
            _black_list = copy.copy(PURE_BF16_BLACK_LIST)
154 155 156
    if custom_white_list and custom_black_list:
        for op_name in custom_white_list:
            if op_name in custom_black_list:
157 158 159
                raise ValueError(
                    "Custom white list overlap " "custom black list"
                )
160 161 162 163 164 165 166 167 168 169 170 171 172
    if custom_white_list:
        for op_name in custom_white_list:
            if op_name in _black_list:
                _black_list.remove(op_name)
            _white_list.add(op_name)
    if custom_black_list:
        for op_name in custom_black_list:
            if op_name in _white_list:
                _white_list.remove(op_name)
            _black_list.add(op_name)
    return _white_list, _black_list


173 174 175 176 177 178
def _in_amp_guard():
    """
    Judge whether current code block is in `amp_guard` context.
    """
    tracer = _dygraph_tracer()
    if tracer:
L
Leo Chen 已提交
179
        if tracer._amp_level == core.AmpLevel.O1:
180 181 182
            return True
        else:
            return False
183 184 185 186
    else:
        return False


187 188 189 190 191
def _in_pure_fp16_guard():
    tracer = _dygraph_tracer()
    return tracer and tracer._amp_level == core.AmpLevel.O2


192 193 194 195 196 197 198 199 200 201 202 203 204 205
def _is_gpu_float16_supported():
    """
    Judge whether current gpu support float16 amp.
    """
    prop = paddle.device.cuda.get_device_capability()
    return prop[0] >= 7


def _is_gpu_bfloat16_supported():
    """
    Judge whether current gpu support bfloat16 amp.
    """
    prop = paddle.device.cuda.get_device_capability()
    cuda_version = paddle.version.cuda()
206
    if cuda_version is not None and cuda_version != 'False':
207 208 209 210 211 212
        cuda_version_check = int(cuda_version.split('.')[0]) >= 11
    else:
        cuda_version_check = False
    return prop[0] >= 8 and cuda_version_check


213
@dygraph_only
214
def pure_fp16_initialize(models):
215 216 217
    for idx in range(len(models)):
        for layer in models[idx].sublayers(include_self=True):
            layer._casted_by_pure_fp16 = True
218
            if (layer._dtype == 'float16') or isinstance(
219 220 221 222 223 224 225 226 227 228
                layer,
                (
                    paddle.nn.BatchNorm,
                    paddle.nn.BatchNorm1D,
                    paddle.nn.BatchNorm2D,
                    paddle.nn.BatchNorm3D,
                    paddle.nn.LayerNorm,
                    paddle.nn.SyncBatchNorm,
                ),
            ):
229
                continue
230 231 232 233 234 235 236
            if isinstance(
                layer,
                (
                    paddle.incubate.nn.FusedFeedForward,
                    paddle.incubate.nn.FusedMultiHeadAttention,
                ),
            ):
237 238
                layer._amp_decorate(dtype='float16')
                continue
239 240 241
            layer._to_impl(
                dtype='float16', include_sublayers=False, floating_only=True
            )
242
    return models
243 244


245 246 247 248
@dygraph_only
def pure_bf16_initialize(models):
    for idx in range(len(models)):
        for layer in models[idx].sublayers(include_self=True):
249 250 251
            layer._to_impl(
                dtype='bfloat16', include_sublayers=False, floating_only=True
            )
252 253 254
    return models


255 256 257 258
def check_models(models):
    for model in models:
        if not isinstance(model, paddle.nn.Layer):
            raise RuntimeError(
259 260 261 262
                "Current train mode is pure fp16, models should be paddle.nn.Layer, but receive {}.".format(
                    type(model)
                )
            )
263 264 265 266
        if isinstance(model, paddle.DataParallel):
            raise RuntimeError(
                "For distributed AMP training, you should first use paddle.amp.decorate() to decotate origin model, and then call paddle.DataParallel get distributed model."
            )
267 268


269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
def _is_valid_optimizer(optimizer):
    from paddle.distributed.fleet.meta_optimizers.dygraph_optimizer.dygraph_sharding_optimizer import (
        DygraphShardingOptimizer,
    )

    return isinstance(
        optimizer,
        (
            paddle.optimizer.Optimizer,
            paddle.fluid.optimizer.Optimizer,
            DygraphShardingOptimizer,
        ),
    )


284 285
def check_optimizers(optimizers):
    for optimizer in optimizers:
286
        if not _is_valid_optimizer(optimizer):
287
            raise RuntimeError(
288
                "Current train mode is pure fp16, optimizers should be paddle.optimizer.Optimizer or paddle.fluid.optimizer.Optimizer or DygraphShardingOptimizer, but receive {}.".format(
289 290 291
                    type(optimizer)
                )
            )
292 293


294 295
@signature_safe_contextmanager
@dygraph_only
296 297 298 299 300 301 302
def amp_guard(
    enable=True,
    custom_white_list=None,
    custom_black_list=None,
    level='O1',
    dtype='float16',
):
303 304 305
    """
    :api_attr: imperative

306
    Create a context which enables auto-mixed-precision(AMP) of operators executed in dynamic graph mode.
307 308 309 310
    If enabled, the input data type (float32 or float16) of each operator is decided
    by autocast algorithm for better performance.

    Commonly, it is used together with `GradScaler` to achieve Auto-Mixed-Precision in
311
    imperative mode. It is used together with `decorator` to achieve Pure fp16 in imperative mode.
312 313 314

    Args:
        enable(bool, optional): Enable auto-mixed-precision or not. Default is True.
315
        custom_white_list(set|list|tuple, optional): The custom white_list. It's the set of ops that support
316
             fp16 calculation and are considered numerically-safe and performance-critical. These ops
317 318
             will be converted to fp16.
        custom_black_list(set|list|tuple, optional): The custom black_list. The set of ops that support fp16
319
             calculation and are considered numerically-dangerous and whose effects may also be
320
             observed in downstream ops. These ops will not be converted to fp16.
321
        level(str, optional): Auto mixed precision level. Accepted values are "O1" and "O2": O1 represent mixed precision, the input data type of each operator will be casted by white_list and black_list;
322
             O2 represent Pure fp16, all operators parameters and input data will be casted to fp16, except operators in black_list, don't support fp16 kernel and batchnorm. Default is O1(amp)
323
        dtype(str, optional): Whether to use 'float16' or 'bfloat16'. Default is 'float16'.
324

325

326 327 328 329 330
    Examples:

     .. code-block:: python

        import numpy as np
331
        import paddle
332 333

        data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
334 335 336 337
        with paddle.fluid.dygraph.guard():
            conv2d = paddle.fluid.dygraph.Conv2D(3, 2, 3)
            data = paddle.fluid.dygraph.to_variable(data)
            with paddle.fluid.dygraph.amp_guard():
338 339
                conv = conv2d(data)
                print(conv.dtype) # FP16
340
            with paddle.fluid.dygraph.amp_guard(enable=False):
341 342 343 344
                conv = conv2d(data)
                print(conv.dtype) # FP32

    """
L
Leo Chen 已提交
345 346 347 348 349
    amp_state = locals()
    global _g_amp_state_
    original_state = _g_amp_state_
    _g_amp_state_ = amp_state

350 351
    # check amp_level: O0-O2
    level = level.upper()
L
Leo Chen 已提交
352
    if not (level in ['O0', 'O1', 'O2']):
353
        raise ValueError(
354
            "level should be O0, O1 or O2. O0 represents fp32 train mode, O1 represents AMP train mode, O2 represents pure fp16/bf16 train mode."
355 356
        )

357 358 359 360 361 362
    # check amp_dtype: float16 or bfloat16
    dtype = dtype.lower()
    if not (dtype in ['float16', 'bfloat16']):
        raise ValueError("dtype should be 'float16' or 'bfloat16'.")

    # check tracer
363 364 365
    tracer = _dygraph_tracer()
    if not tracer:
        raise ValueError(
366 367
            "current_tracer is None, maybe it is not in imperative mode."
        )
368

369
    # check device_type:
Q
qipengh 已提交
370
    # NOTE: Now, amp only support gpu for float16 and bfloat16, xpu for float16, mlu for float16, npu for float16.
371
    # Maybe we will support cpu for bfloat16.
372 373 374 375 376 377 378
    if enable and not (
        tracer._expected_place.is_gpu_place()
        or tracer._expected_place.is_xpu_place()
        or tracer._expected_place.is_mlu_place()
        or tracer._expected_place.is_npu_place()
        or tracer._expected_place.is_custom_place()
    ):
379
        warnings.warn(
380
            'amp_guard can only be enabled on CUDAPlace, XPUPlace, MLUPlace, NPUPlace, and CustomPlace, current place is %s, so it makes no effect.'
381 382
            % tracer._expected_place
        )
383
        enable = False
F
furnace 已提交
384 385 386 387
    # For npu:
    if tracer._expected_place.is_npu_place() and (dtype == 'bfloat16'):
        warnings.warn('NPUPlace only support float16 amp.')
        enable = False
388 389 390 391
    # For xpu:
    if tracer._expected_place.is_xpu_place() and (dtype == 'bfloat16'):
        warnings.warn('XPUPlace only support float16 amp.')
        enable = False
Q
qipengh 已提交
392 393 394 395
    # For mlu:
    if tracer._expected_place.is_mlu_place() and (dtype == 'bfloat16'):
        warnings.warn('MLUPlace only support float16 amp.')
        enable = False
396 397 398 399
    # For custom device:
    if tracer._expected_place.is_custom_place() and (dtype == 'bfloat16'):
        warnings.warn('CustomPlace only support float16 amp.')
        enable = False
400 401
    # For gpu float16: Compute Capability should >= 7.
    # For gpu bfloat16: Compute Capability should >= 8 & CUDA Version should >= 11.
Z
zhangbo9674 已提交
402
    if tracer._expected_place.is_gpu_place():
403 404
        if (dtype == 'float16') and not _is_gpu_float16_supported():
            prop = paddle.device.cuda.get_device_capability()
Z
zhangbo9674 已提交
405
            warnings.warn(
406
                "For float16, amp only support NVIDIA GPU with Compute Capability 7.0 or higher, current GPU is: %s, with Compute Capability: %d.%d."
407 408
                % (paddle.device.cuda.get_device_name(), prop[0], prop[1])
            )
409 410 411 412 413
        elif (dtype == 'bfloat16') and not _is_gpu_bfloat16_supported():
            prop = paddle.device.cuda.get_device_capability()
            cuda_version = paddle.version.cuda()
            warnings.warn(
                "For bfloat16, amp only support NVIDIA GPU with Compute Capability 8.0 or higher and CUDA Version 11.0 or higher, current GPU is: %s, with Compute Capability: %d.%d, current CUDA Version is: %s."
414 415 416 417 418 419 420
                % (
                    paddle.device.cuda.get_device_name(),
                    prop[0],
                    prop[1],
                    cuda_version,
                )
            )
421 422

    amp_dtype = dtype
Z
zhangbo9674 已提交
423

424
    if level == 'O1':
L
Leo Chen 已提交
425
        amp_level = AMP_LEVEL.O1
426 427 428 429 430 431 432
        if dtype == 'float16':
            _white_list = WHITE_LIST
            _black_list = BLACK_LIST
        elif dtype == 'bfloat16':
            _white_list = BF16_WHITE_LIST
            _black_list = BF16_BLACK_LIST

L
Leo Chen 已提交
433
    elif level == 'O2':
L
Leo Chen 已提交
434
        amp_level = AMP_LEVEL.O2
435 436 437 438 439 440
        if dtype == 'float16':
            _white_list = PURE_FP16_WHITE_LIST
            _black_list = PURE_FP16_BLACK_LIST
        elif dtype == 'bfloat16':
            _white_list = BF16_WHITE_LIST
            _black_list = BF16_BLACK_LIST
L
Leo Chen 已提交
441 442
    elif level == 'O0':
        amp_level = AMP_LEVEL.O0
443 444 445 446 447 448
        if dtype == 'float16':
            _white_list = WHITE_LIST
            _black_list = BLACK_LIST
        elif dtype == 'bfloat16':
            _white_list = BF16_WHITE_LIST
            _black_list = BF16_BLACK_LIST
449

450
    if custom_white_list or custom_black_list:
451 452 453
        _white_list, _black_list = _update_list(
            custom_white_list, custom_black_list, level, dtype
        )
454 455

    if not enable:
L
Leo Chen 已提交
456
        amp_level = AMP_LEVEL.O0
457
        amp_dtype = "float32"
458 459 460

    if tracer:
        # enable auto_cast
461 462 463
        original_amp_level = tracer._amp_level
        tracer._amp_level = amp_level

464 465 466 467 468 469 470 471 472 473 474 475
        # set amp op list
        original_white_list, original_black_list = tracer._get_amp_op_list()
        tracer._set_amp_op_list(_white_list, _black_list)

        # TODO(zhiqiu) set amp related flags automatically in this guard
        # Currently, if FLAGS_cudnn_batchnorm_spatial_persistent is set True in amp_guard,
        # batch_norm can run in fast mode, but batch_norm_grad can not if backward if not executed insise amp_guard.
        # So, users need to set related flags manually.

        # original_flags = get_flags(AMP_RELATED_FLAGS)
        # set_flags(AMP_RELATED_FLAGS_SETTING)

476 477 478 479
        # set amp dtype
        original_amp_dtype = tracer._amp_dtype
        tracer._amp_dtype = amp_dtype

480 481 482 483 484
    # restore status
    try:
        yield
    finally:
        if tracer:
L
Leo Chen 已提交
485
            _g_amp_state_ = original_state
486
            tracer._amp_level = original_amp_level
487 488
            tracer._set_amp_op_list(original_white_list, original_black_list)
            # set_flags(original_flags)
489
            tracer._amp_dtype = original_amp_dtype
490 491


492
class StateDictHook:
493 494 495 496 497 498
    def __init__(self, save_dtype):
        self._save_dtype = save_dtype

    def __call__(self, state_dict):
        for key in state_dict:
            param = state_dict[key]
499
            with paddle.fluid.dygraph.guard():
500 501 502 503
                if paddle.is_floating_point(param):
                    param_applied = paddle.cast(param, self._save_dtype)
                    param_applied.name = param.name
                    state_dict[key] = param_applied
504 505


506 507 508 509 510 511 512 513 514 515 516 517 518 519
def _set_multi_precision(optimizer, multi_precision):
    from paddle.distributed.fleet.meta_optimizers.dygraph_optimizer.dygraph_sharding_optimizer import (
        DygraphShardingOptimizer,
    )

    optimizer = (
        optimizer._inner_optimizer
        if isinstance(optimizer, DygraphShardingOptimizer)
        else optimizer
    )
    if hasattr(optimizer, "_multi_precision"):
        optimizer._multi_precision = multi_precision


520
@dygraph_only
521 522 523 524 525 526 527 528
def amp_decorate(
    models,
    optimizers=None,
    level='O1',
    dtype='float16',
    master_weight=None,
    save_dtype=None,
):
529
    """
530
    Decorate models and optimizers for auto-mixed-precision. When level is O1(amp), the decorate will do nothing.
531
    When level is O2(pure fp16), the decorate will cast all parameters of models to FP16, except BatchNorm and LayerNorm.
532

533 534 535 536 537
    Commonly, it is used together with `amp_guard` to achieve Pure fp16 in imperative mode.

    Args:
        models(Layer|list of Layer, optional): The defined models by user, models must be either a single model or a list of models. Default is None.
        optimizers(Optimizer|list of Optimizer, optional): The defined optimizers by user, optimizers must be either a single optimizer or a list of optimizers. Default is None.
538
        level(str, optional): Auto mixed precision level. Accepted values are "O1" and "O2": O1 represent mixed precision, the decorator will do nothing;
539 540
             O2 represent Pure fp16/bf16, the decorator will cast all parameters of models to FP16/BF16, except BatchNorm and LayerNorm. Default is O1(amp)
        dtype(str, optional): Whether to use 'float16' or 'bfloat16'. Default is 'float16'.
541
        master_weight(bool, optinal): For level='O2', whether to use multi-precision during weight updating. If master_weight is None, in O2 level optimizer will use multi-precision. Default is None.
542
        save_dtype(float, optional): The save model parameter dtype when use `paddle.save` or `paddle.jit.save`,it should be float16, bfloat16, float32, float64 or None.
543 544 545 546
             The save_dtype will not change model parameters dtype, it just change the state_dict dtype. When save_dtype is None, the save dtype is same as model dtype. Default is None.

    Examples:

547 548
     .. code-block:: python

549 550 551 552 553
        # required: gpu
        # Demo1: single model and optimizer:
        import paddle

        model = paddle.nn.Conv2D(3, 2, 3, bias_attr=False)
554
        optimizer = paddle.optimizer.SGD(parameters=model.parameters())
555

556
        model, optimizer = paddle.fluid.dygraph.amp_decorate(models=model, optimizers=optimizer, level='O2')
557 558 559

        data = paddle.rand([10, 3, 32, 32])

560
        with paddle.fluid.dygraph.amp_guard(enable=True, custom_white_list=None, custom_black_list=None, level='O2'):
561 562 563 564 565 566 567 568
            output = model(data)
            print(output.dtype) # FP16

        # required: gpu
        # Demo2: multi models and optimizers:
        model2 = paddle.nn.Conv2D(3, 2, 3, bias_attr=False)
        optimizer2 = paddle.optimizer.Adam(parameters=model2.parameters())

569
        models, optimizers = paddle.fluid.dygraph.amp_decorate(models=[model, model2], optimizers=[optimizer, optimizer2], level='O2')
570 571 572

        data = paddle.rand([10, 3, 32, 32])

573
        with paddle.fluid.dygraph.amp_guard(enable=True, custom_white_list=None, custom_black_list=None, level='O2'):
574 575 576 577
            output = models[0](data)
            output2 = models[1](data)
            print(output.dtype) # FP16
            print(output2.dtype) # FP16
578

579 580 581 582 583 584 585 586 587 588 589 590
        # required: gpu
        # Demo3: optimizers is None:
        model3 = paddle.nn.Conv2D(3, 2, 3, bias_attr=False)
        optimizer3 = paddle.optimizer.Adam(parameters=model2.parameters())

        model = paddle.fluid.dygraph.amp_decorate(models=model3, level='O2')

        data = paddle.rand([10, 3, 32, 32])

        with paddle.fluid.dygraph.amp_guard(enable=True, custom_white_list=None, custom_black_list=None, level='O2'):
            output = model(data)
            print(output.dtype) # FP16
591 592 593 594 595 596 597
    """
    if not (level in ['O1', 'O2']):
        raise ValueError(
            "level should be O1 or O2, O1 represent AMP train mode, O2 represent Pure fp16 train mode."
        )

    if level == 'O1':
598 599 600 601
        if optimizers is None:
            return models
        else:
            return models, optimizers
602 603 604 605 606 607 608 609 610 611 612

    models_is_list = False
    if isinstance(models, paddle.nn.Layer):
        models_is_list = False
        models = [models]
        check_models(models)
    elif isinstance(models, list):
        check_models(models)
        models_is_list = True
    else:
        raise TypeError(
613 614
            "models must be either a single model or a list of models."
        )
615 616 617 618 619 620
    if dtype == 'float16':
        models = pure_fp16_initialize(models=models)
    elif dtype == 'bfloat16':
        models = pure_bf16_initialize(models=models)
    else:
        raise TypeError("dtype only support float16 or bfloat16.")
621

622 623 624
    if optimizers is not None:
        # check optimizers
        optimizers_is_list = False
625
        if _is_valid_optimizer(optimizers):
626 627 628 629 630 631 632 633 634 635
            optimizers_is_list = False
            optimizers = [optimizers]
            check_optimizers(optimizers)
        elif isinstance(optimizers, list):
            check_optimizers(optimizers)
            optimizers_is_list = True
        else:
            raise TypeError(
                "optimizers must be either a single optimizer or a list of optimizers."
            )
636 637 638 639
        # support master_weight
        use_multi_precision = not (master_weight is False)
        for opt in optimizers:
            _set_multi_precision(opt, use_multi_precision)
640 641

    if save_dtype is not None:
642
        if not (save_dtype in ['float16', 'bfloat16', 'float32', 'float64']):
643 644
            raise ValueError(
                "save_dtype can only be float16 float32 or float64, but your input save_dtype is %s."
645 646
                % save_dtype
            )
647 648 649 650 651
        for idx in range(len(models)):
            for layer in models[idx].sublayers(include_self=True):
                layer.register_state_dict_hook(StateDictHook(save_dtype))

    if models_is_list:
652 653 654 655 656
        if optimizers is not None:
            if optimizers_is_list:
                return models, optimizers
            else:
                return models, optimizers[0]
657
        else:
658
            return models
659
    else:
660 661 662 663 664
        if optimizers is not None:
            if optimizers_is_list:
                return models[0], optimizers
            else:
                return models[0], optimizers[0]
665
        else:
666
            return models[0]