BufferArg.h 11.2 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <glog/logging.h>

#include "TensorShape.h"
#include "TensorType.h"
#include "paddle/math/Matrix.h"

namespace paddle {

enum BufferType {
X
xutianbing 已提交
26 27 28 29 30
  TENSOR_UNKNOWN = 0,
  TENSOR_NORMAL = 1,
  TENSOR_SEQUENCE_ID = 2,
  TENSOR_SEQUENCE_DATA = 3,
  TENSOR_SPARSE = 4
H
hedaoyuan 已提交
31 32 33 34 35 36
};

class BufferArg;
class SequenceArg;
class SparseMatrixArg;

37 38 39 40 41 42 43 44 45
/**
 * \brief BufferArg used as the argument type of Function.
 *
 * The arguments of the Paddle Function have four Buffer types.
 * 1. BufferArg for a dense Buffer of any dimension.
 * 2. SequenceIdArg for a Buffer of sequence start positions.
 * 3. SequenceArg for a Buffer of sequence data.
 * 4. SparseMatrixArg for a Buffer of sparse matrix.
 *
46 47 48 49 50
 * Buffer shape
 * For most buffers, the first dimension `shape()[0]` represents
 * the size of the mini-batch.
 *
 * Buffer argType
51 52 53 54 55
 * There is an ArgType property for the BufferArg used as Function Output.
 * Whether the result of the Function calculation is assigned to the
 * output Buffer or added to the output Buffer is determined by the
 * argType_ property of the output BufferArg.
 */
56 57 58 59 60 61 62 63 64

// ArgType is only used by output BufferArg.
// For input argument, argType_ is ignored.
// For output argument, need to set the argType_ of the BufferArg.
enum ArgType {
  UNSPECIFIED = 0,
  ASSIGN_TO = 1,
  ADD_TO = 2,
};
H
hedaoyuan 已提交
65
class BufferArg {
66 67 68 69 70
public:
  void setArgType(ArgType argType) { argType_ = argType; }

  ArgType getArgType() const { return argType_; }

H
hedaoyuan 已提交
71
public:
72 73
  BufferArg(ValueType valueType,
            const TensorShape& shape,
X
xutianbing 已提交
74
            ArgType argType = UNSPECIFIED)
75 76 77
      : buf_(nullptr), valueType_(valueType), shape_(shape), argType_(argType) {
    bufferType_ = TENSOR_NORMAL;
  }
78

79 80 81
  BufferArg(void* buf,
            ValueType valueType,
            const TensorShape& shape,
X
xutianbing 已提交
82
            ArgType argType = UNSPECIFIED)
83 84 85
      : buf_(buf), valueType_(valueType), shape_(shape), argType_(argType) {
    bufferType_ = TENSOR_NORMAL;
  }
H
hedaoyuan 已提交
86

87 88 89
  BufferArg(void* buf, ValueType valueType) : buf_(buf), valueType_(valueType) {
    bufferType_ = TENSOR_NORMAL;
  }
H
hedaoyuan 已提交
90

91
  BufferArg(const Matrix& matrix, ArgType argType = UNSPECIFIED)
92 93
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(matrix.getData()))),
H
hedaoyuan 已提交
94
        valueType_(DataType<real>::value),
95
        shape_(2),
X
xutianbing 已提交
96
        argType_(argType) {
X
xutianbing 已提交
97
    bufferType_ = TENSOR_NORMAL;
H
hedaoyuan 已提交
98 99 100 101
    shape_.setDim(0, matrix.getHeight());
    shape_.setDim(1, matrix.getWidth());
  }

102 103 104
  BufferArg(const Matrix& matrix,
            const TensorShape& shape,
            ArgType argType = UNSPECIFIED)
105 106
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(matrix.getData()))),
H
hedaoyuan 已提交
107
        valueType_(DataType<real>::value),
108
        shape_(shape),
X
xutianbing 已提交
109
        argType_(argType) {
X
xutianbing 已提交
110
    bufferType_ = TENSOR_NORMAL;
H
hedaoyuan 已提交
111 112 113
    CHECK_EQ(matrix.getElementCnt(), shape.getElements());
  }

114
  BufferArg(const Vector& vector, ArgType argType = UNSPECIFIED)
115 116
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(vector.getData()))),
H
hedaoyuan 已提交
117
        valueType_(DataType<real>::value),
118 119
        shape_(1),
        argType_(argType) {
X
xutianbing 已提交
120
    bufferType_ = TENSOR_NORMAL;
H
hedaoyuan 已提交
121 122 123
    shape_.setDim(0, vector.getSize());
  }

124
  BufferArg(const IVector& vector, ArgType argType = UNSPECIFIED)
125 126
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(vector.getData()))),
H
hedaoyuan 已提交
127
        valueType_(VALUE_TYPE_INT32),
128 129
        shape_(1),
        argType_(argType) {
X
xutianbing 已提交
130
    bufferType_ = TENSOR_NORMAL;
H
hedaoyuan 已提交
131 132 133 134 135 136 137 138
    shape_.setDim(0, vector.getSize());
  }

  template <DeviceType DType>
  typename Tensor<real, DType>::Matrix matrix() const {
    CHECK(buf_);
    CHECK(valueType_ == DataType<real>::value);
    // CHECK(deviceType_ == DType);
H
hedaoyuan 已提交
139
    CHECK_EQ((size_t)2, shape_.ndims());
H
hedaoyuan 已提交
140
    return typename Tensor<real, DType>::Matrix(
X
xutianbing 已提交
141
        reinterpret_cast<real*>(buf_), shape_[0], shape_[1]);
H
hedaoyuan 已提交
142 143 144 145 146 147 148
  }

  template <typename VType, DeviceType DType>
  typename Tensor<VType, DType>::Vector vector() const {
    CHECK(buf_);
    CHECK(valueType_ == DataType<VType>::value);
    // CHECK(deviceType_ == DType);
H
hedaoyuan 已提交
149
    CHECK_EQ((size_t)1, shape_.ndims());
H
hedaoyuan 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    return typename Tensor<VType, DType>::Vector(
        shape_[0], reinterpret_cast<VType*>(buf_));
  }

  virtual ~BufferArg() {}

  template <typename T>
  T* data() const {
    return reinterpret_cast<T*>(buf_);
  }

  void* data() const { return buf_; }
  ValueType valueType() const { return valueType_; }
  BufferType bufferType() const { return bufferType_; }
  const TensorShape& shape() const { return shape_; }
165
  bool isSparseArg() const { return TENSOR_SPARSE == bufferType_; }
X
xutianbing 已提交
166
  bool isSequenceArg() const { return TENSOR_SEQUENCE_DATA == bufferType_; }
167
  virtual size_t numElements() const { return shape_.getElements(); }
H
hedaoyuan 已提交
168 169 170 171 172 173 174 175

  const SequenceArg& sequence() const;
  const SparseMatrixArg& sparse() const;

protected:
  void* buf_;
  ValueType valueType_;
  TensorShape shape_;
X
xutianbing 已提交
176 177
  BufferType bufferType_{TENSOR_UNKNOWN};
  ArgType argType_{UNSPECIFIED};
178
  // TODO(tianbing), add deviceType_
H
hedaoyuan 已提交
179 180 181 182 183 184 185
  // leading dimensions. The size is dims_.size()
  // Dims lds_;
};

// sequence start positions in a mini-batch of sequences
// shape_.ndims() == 1
// valueType_ = int32
H
hedaoyuan 已提交
186
// if a < b then value_.buf_[a] < value_.buf_[b]
H
hedaoyuan 已提交
187 188
class SequenceIdArg : public BufferArg {
public:
189 190
  SequenceIdArg(const TensorShape& shape, ArgType argType = UNSPECIFIED)
      : BufferArg(VALUE_TYPE_INT32, shape, argType) {
191
    bufferType_ = TENSOR_SEQUENCE_ID;
192
    CHECK_EQ(shape_.ndims(), (size_t)1);
H
hedaoyuan 已提交
193
    CHECK_GT(shape_[0], 1);
194 195 196
    numSeqs_ = shape_[0] - 1;
  }

197 198 199 200
  SequenceIdArg(void* buf,
                const TensorShape& shape,
                ArgType argType = UNSPECIFIED)
      : BufferArg(buf, VALUE_TYPE_INT32, shape, argType) {
X
xutianbing 已提交
201
    bufferType_ = TENSOR_SEQUENCE_ID;
H
hedaoyuan 已提交
202
    CHECK_EQ(shape_.ndims(), (size_t)1);
H
hedaoyuan 已提交
203 204 205 206
    numSeqs_ = shape_[0] - 1;
  }

  SequenceIdArg(const IVector& vector) : BufferArg(vector) {
X
xutianbing 已提交
207
    bufferType_ = TENSOR_SEQUENCE_ID;
H
hedaoyuan 已提交
208 209 210 211 212 213 214 215 216 217 218
    numSeqs_ = shape_[0] - 1;
  }

  ~SequenceIdArg() {}

  size_t numSeqs() const { return numSeqs_; }

private:
  size_t numSeqs_;
};

219 220 221 222 223
// sequences data
// For mini-batch calculate,
// one batch can contain more than one sequence of data.
// SequenceArg can be used to represent sequences that contain multiple
// unequal lengths.
H
hedaoyuan 已提交
224 225
class SequenceArg : public BufferArg {
public:
226 227 228
  SequenceArg(ValueType valueType,
              const TensorShape& shape,
              ArgType argType = UNSPECIFIED)
229 230 231
      : BufferArg(valueType, shape, argType), startPositions_(TensorShape()) {
    bufferType_ = TENSOR_SEQUENCE_DATA;
  }
232

H
hedaoyuan 已提交
233 234 235
  SequenceArg(void* buf,
              ValueType valueType,
              const TensorShape& shape,
236 237 238
              const SequenceIdArg& startPositions,
              ArgType argType = UNSPECIFIED)
      : BufferArg(buf, valueType, shape, argType),
X
xutianbing 已提交
239 240 241
        startPositions_(startPositions) {
    bufferType_ = TENSOR_SEQUENCE_DATA;
  }
H
hedaoyuan 已提交
242

243 244 245
  SequenceArg(const Matrix& matrix,
              const IVector& vector,
              ArgType argType = UNSPECIFIED)
X
xutianbing 已提交
246 247 248
      : BufferArg(matrix, argType), startPositions_(vector) {
    bufferType_ = TENSOR_SEQUENCE_DATA;
  }
H
hedaoyuan 已提交
249 250 251 252 253

  ~SequenceArg() {}

  void* getIdBuf() const { return startPositions_.data(); }
  size_t numSeqs() const { return startPositions_.numSeqs(); }
254 255
  SequenceIdArg& getSequenceId() { return startPositions_; }
  const SequenceIdArg& getSequenceId() const { return startPositions_; }
H
hedaoyuan 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

private:
  SequenceIdArg startPositions_;
};

// sparse matrix
// valueType_ == float or double
// shape_.ndims() == 2
class SparseMatrixArg : public BufferArg {
public:
  SparseMatrixArg(void* buf,
                  ValueType valueType,
                  const TensorShape& shape,
                  const BufferArg& row,
                  const BufferArg& col,
                  size_t nnz,
272 273
                  SparseFormat format,
                  SparseValueType type,
X
xutianbing 已提交
274 275
                  ArgType argType = UNSPECIFIED)
      : BufferArg(buf, valueType, shape, argType),
H
hedaoyuan 已提交
276 277 278
        row_(row),
        col_(col),
        nnz_(nnz),
279 280
        format_(static_cast<SparseDataFormat>(format)),
        type_(static_cast<SparseDataType>(type)) {
X
xutianbing 已提交
281
    bufferType_ = TENSOR_SPARSE;
H
hedaoyuan 已提交
282
    CHECK((valueType == VALUE_TYPE_FLOAT) || (valueType == VALUE_TYPE_DOUBLE));
H
hedaoyuan 已提交
283 284 285
    CHECK_EQ(shape_.ndims(), (size_t)2);
    CHECK_EQ(row_.shape().ndims(), (size_t)1);
    CHECK_EQ(col_.shape().ndims(), (size_t)1);
286
    if (format_ == T_SPARSE_CSR) {
H
hedaoyuan 已提交
287
      CHECK_EQ(nnz, col.shape()[0]);
288
    } else if (format_ == T_SPARSE_CSC) {
H
hedaoyuan 已提交
289 290 291 292
      CHECK_EQ(nnz, row.shape()[0]);
    }
  }

293 294 295 296 297
  SparseMatrixArg(ValueType valueType,
                  const TensorShape& shape,
                  size_t nnz,
                  SparseFormat format,
                  SparseValueType type,
X
xutianbing 已提交
298 299
                  ArgType argType = UNSPECIFIED)
      : BufferArg(valueType, shape, argType),
300 301
        row_(BufferArg(nullptr, VALUE_TYPE_INT32)),
        col_(BufferArg(nullptr, VALUE_TYPE_INT32)),
302
        nnz_(nnz),
303 304
        format_(static_cast<SparseDataFormat>(format)),
        type_(static_cast<SparseDataType>(type)) {
305 306 307
    bufferType_ = TENSOR_SPARSE;
    CHECK((valueType == VALUE_TYPE_FLOAT) || (valueType == VALUE_TYPE_DOUBLE));
    CHECK_EQ(shape_.ndims(), (size_t)2);
308 309 310 311 312 313 314 315 316

    /// len of row_ : height + 1 (CSR) or nnz (CSC), buf_ == nullptr
    row_ = (format_ == T_SPARSE_CSR
                ? BufferArg(VALUE_TYPE_INT32, TensorShape{shape_[0] + 1})
                : BufferArg(VALUE_TYPE_INT32, TensorShape{nnz}));
    /// len of col_ :  width + 1 (CSC) or nnz (CSR), buf_ == nullptr
    col_ = (format_ == T_SPARSE_CSR
                ? BufferArg(VALUE_TYPE_INT32, TensorShape{nnz})
                : BufferArg(VALUE_TYPE_INT32, TensorShape{shape_[1] + 1}));
317 318
  }

319
  SparseMatrixArg(const CpuSparseMatrix& sparse, ArgType argType = UNSPECIFIED);
H
hedaoyuan 已提交
320

321
  SparseMatrixArg(const GpuSparseMatrix& sparse, ArgType argType = UNSPECIFIED);
H
hedaoyuan 已提交
322

323 324 325 326 327 328 329 330 331 332 333 334 335
  template <DeviceType DType>
  typename Tensor<real, DType>::SparseMatrix SparseMatrix() const {
    CHECK(buf_);
    CHECK(valueType_ == DataType<real>::value);
    // CHECK(deviceType_ == DType);
    CHECK_EQ(2, shape_.ndims());
    return typename Tensor<real, DType>::SparseMatrix(
        reinterpret_cast<real*>(buf_),
        reinterpret_cast<int*>(row_.data()),
        reinterpret_cast<int*>(col_.data()),
        shape_[0],
        shape_[1],
        nnz_,
336 337
        static_cast<SparseValueType>(type_),
        static_cast<SparseFormat>(format_),
X
xutianbing 已提交
338
        false);
339 340
  }

H
hedaoyuan 已提交
341 342 343 344 345 346 347 348
  ~SparseMatrixArg() {}

  void* getRowBuf() const { return row_.data(); }

  void* getColBuf() const { return col_.data(); }

  size_t nnz() const { return nnz_; }

349 350
  size_t numElements() const override { return nnz_; }

351
  SparseDataFormat dataFormat() const { return format_; }
H
hedaoyuan 已提交
352

353
  SparseDataType dataType() const { return type_; }
H
hedaoyuan 已提交
354 355 356 357 358

private:
  BufferArg row_;
  BufferArg col_;
  size_t nnz_;
359 360
  SparseDataFormat format_;
  SparseDataType type_;
H
hedaoyuan 已提交
361 362 363
};

}  // namespace paddle