bernoulli_op.cc 3.0 KB
Newer Older
L
Leo Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/bernoulli_op.h"

#include <algorithm>
#include <string>

#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/common_infer_shape_functions.h"

namespace paddle {
namespace operators {

class BernoulliOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "A tensor with probabilities for generating the random binary "
             "number");
    AddOutput("Out", "A Tensor filled with random binary number");
    AddComment(R"DOC(
This OP returns a Tensor filled with random binary(0 or 1) number from a Bernoulli distribution.

    Out ~ Bernoulli(X)

)DOC");
  }
};

class BernoulliOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    return UnaryOpUnchangedInferShape(ctx);
  }
};

// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
template <typename T>
class BernoulliOpKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto x = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");
    auto *in_data = x->data<T>();
    auto *out_data = out->mutable_data<T>(ctx.GetPlace());

    int64_t size = x->numel();
    std::uniform_real_distribution<T> dist(0.0, 1.0);
L
Leo Chen 已提交
67 68
    auto gen_ptr = framework::DefaultCPUGenerator();
    auto engine = gen_ptr->GetCPUEngine();
L
Leo Chen 已提交
69 70

    for (int64_t i = 0; i < size; ++i) {
L
Leo Chen 已提交
71
      out_data[i] = BernoulliFunctor(in_data[i], dist(*engine));
L
Leo Chen 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    }
  }
};  // namespace operators

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OPERATOR(
    bernoulli, ops::BernoulliOp, ops::BernoulliOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OP_CPU_KERNEL(bernoulli,
                       ops::BernoulliOpKernel<plat::CPUDeviceContext, float>,
                       ops::BernoulliOpKernel<plat::CPUDeviceContext, double>);