math.py 10.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid.layer_helper import LayerHelper, _non_static_mode
from paddle.fluid.data_feeder import check_variable_and_dtype
from paddle import _C_ops, _legacy_C_ops
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode

__all__ = []


def segment_sum(data, segment_ids, name=None):
    r"""
    Segment Sum Operator.

    This operator sums the elements of input `data` which with
    the same index in `segment_ids`.
    It computes a tensor such that $out_i = \\sum_{j} data_{j}$
    where sum is over j such that `segment_ids[j] == i`.

    Args:
        data (Tensor): A tensor, available data type float32, float64, int32, int64, float16.
        segment_ids (Tensor): A 1-D tensor, which have the same size
35
                            with the first dimension of input data.
36
                            Available data type is int32, int64.
37
        name (str, optional): Name for the operation (optional, default is None).
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
                            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
       output (Tensor): the reduced result.

    Examples:

        .. code-block:: python

            import paddle
            data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
            segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
            out = paddle.geometric.segment_sum(data, segment_ids)
            #Outputs: [[4., 4., 4.], [4., 5., 6.]]

    """
    if in_dygraph_mode():
        return _C_ops.segment_pool(data, segment_ids, "SUM")[0]
    if _in_legacy_dygraph():
        out, tmp = _legacy_C_ops.segment_pool(data, segment_ids, 'pooltype',
                                              "SUM")
        return out

    check_variable_and_dtype(
        data, "X", ("float32", "float64", "int32", "int64", "float16"),
        "segment_pool")
    check_variable_and_dtype(segment_ids, "SegmentIds", ("int32", "int64"),
                             "segment_pool")

    helper = LayerHelper("segment_sum", **locals())
    out = helper.create_variable_for_type_inference(dtype=data.dtype)
    summed_ids = helper.create_variable_for_type_inference(dtype=data.dtype)
    helper.append_op(type="segment_pool",
                     inputs={
                         "X": data,
                         "SegmentIds": segment_ids
                     },
                     outputs={
                         "Out": out,
                         "SummedIds": summed_ids
                     },
                     attrs={"pooltype": "SUM"})
    return out


def segment_mean(data, segment_ids, name=None):
    r"""
    Segment mean Operator.

    Ihis operator calculate the mean value of input `data` which
    with the same index in `segment_ids`.
    It computes a tensor such that $out_i = \\frac{1}{n_i}  \\sum_{j} data[j]$
    where sum is over j such that 'segment_ids[j] == i' and $n_i$ is the number
    of all index 'segment_ids[j] == i'.

    Args:
        data (tensor): a tensor, available data type float32, float64, int32, int64, float16.
95 96
        segment_ids (tensor): a 1-d tensor, which have the same size
                            with the first dimension of input data.
97
                            available data type is int32, int64.
98
        name (str, optional): Name for the operation (optional, default is None).
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
                            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
       output (Tensor): the reduced result.

    Examples:

        .. code-block:: python

            import paddle
            data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
            segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
            out = paddle.geometric.segment_mean(data, segment_ids)
            #Outputs: [[2., 2., 2.], [4., 5., 6.]]

    """

    if in_dygraph_mode():
        return _C_ops.segment_pool(data, segment_ids, "MEAN")[0]
    if _in_legacy_dygraph():
        out, tmp = _legacy_C_ops.segment_pool(data, segment_ids, 'pooltype',
                                              "MEAN")
        return out

    check_variable_and_dtype(
        data, "X", ("float32", "float64", "int32", "int64", "float16"),
        "segment_pool")
    check_variable_and_dtype(segment_ids, "SegmentIds", ("int32", "int64"),
                             "segment_pool")

    helper = LayerHelper("segment_mean", **locals())
    out = helper.create_variable_for_type_inference(dtype=data.dtype)
    summed_ids = helper.create_variable_for_type_inference(dtype=data.dtype)
    helper.append_op(type="segment_pool",
                     inputs={
                         "X": data,
                         "SegmentIds": segment_ids
                     },
                     outputs={
                         "Out": out,
                         "SummedIds": summed_ids
                     },
                     attrs={"pooltype": "MEAN"})
    return out


def segment_min(data, segment_ids, name=None):
    r"""
    Segment min operator.

    This operator calculate the minimum elements of input `data` which with
    the same index in `segment_ids`.
    It computes a tensor such that $out_i = \\min_{j} data_{j}$
    where min is over j such that `segment_ids[j] == i`.

    Args:
        data (tensor): a tensor, available data type float32, float64, int32, int64, float16.
        segment_ids (tensor): a 1-d tensor, which have the same size
157
                            with the first dimension of input data.
158
                            available data type is int32, int64.
159
        name (str, optional): Name for the operation (optional, default is None).
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
                            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
       output (Tensor): the reduced result.

    Examples:

        .. code-block:: python

            import paddle
            data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
            segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
            out = paddle.geometric.segment_min(data, segment_ids)
            #Outputs:  [[1., 2., 1.], [4., 5., 6.]]

    """

    if in_dygraph_mode():
        return _C_ops.segment_pool(data, segment_ids, "MIN")[0]
    if _in_legacy_dygraph():
        out, tmp = _legacy_C_ops.segment_pool(data, segment_ids, 'pooltype',
                                              "MIN")
        return out

    check_variable_and_dtype(
        data, "X", ("float32", "float64", "int32", "int64", "float16"),
        "segment_pool")
    check_variable_and_dtype(segment_ids, "SegmentIds", ("int32", "int64"),
                             "segment_pool")

    helper = LayerHelper("segment_min", **locals())
    out = helper.create_variable_for_type_inference(dtype=data.dtype)
    summed_ids = helper.create_variable_for_type_inference(dtype=data.dtype)
    helper.append_op(type="segment_pool",
                     inputs={
                         "X": data,
                         "SegmentIds": segment_ids
                     },
                     outputs={
                         "Out": out,
                         "SummedIds": summed_ids
                     },
                     attrs={"pooltype": "MIN"})
    return out


def segment_max(data, segment_ids, name=None):
    r"""
    Segment max operator.

    This operator calculate the maximum elements of input `data` which with
    the same index in `segment_ids`.
    It computes a tensor such that $out_i = \\max_{j} data_{j}$
    where max is over j such that `segment_ids[j] == i`.

    Args:
        data (tensor): a tensor, available data type float32, float64, int32, int64, float16.
        segment_ids (tensor): a 1-d tensor, which have the same size
218
                            with the first dimension of input data.
219
                            available data type is int32, int64.
220
        name (str, optional): Name for the operation (optional, default is None).
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
                            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
       output (Tensor): the reduced result.

    Examples:

        .. code-block:: python

            import paddle
            data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
            segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
            out = paddle.geometric.segment_max(data, segment_ids)
            #Outputs: [[3., 2., 3.], [4., 5., 6.]]

    """

    if in_dygraph_mode():
        return _C_ops.segment_pool(data, segment_ids, "MAX")[0]
    if _in_legacy_dygraph():
        out, tmp = _legacy_C_ops.segment_pool(data, segment_ids, 'pooltype',
                                              "MAX")
        return out

    check_variable_and_dtype(
        data, "X", ("float32", "float64", "int32", "int64", "float16"),
        "segment_pool")
    check_variable_and_dtype(segment_ids, "SegmentIds", ("int32", "int64"),
                             "segment_pool")

    helper = LayerHelper("segment_max", **locals())
    out = helper.create_variable_for_type_inference(dtype=data.dtype)
    summed_ids = helper.create_variable_for_type_inference(dtype=data.dtype)
    helper.append_op(type="segment_pool",
                     inputs={
                         "X": data,
                         "SegmentIds": segment_ids
                     },
                     outputs={
                         "Out": out,
                         "SummedIds": summed_ids
                     },
                     attrs={"pooltype": "MAX"})
    return out