bert_tokenizer.py 19.2 KB
Newer Older
S
Steffy-zxf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import io
import json
import os
import six
import unicodedata

from tokenizer_utils import PretrainedTokenizer
from tokenizer_utils import convert_to_unicode, whitespace_tokenize, _is_whitespace, _is_control, _is_punctuation


class BasicTokenizer(object):
    """
    Runs basic tokenization (punctuation splitting, lower casing, etc.).
    Args:
        do_lower_case (bool):
            Whether or not to lowercase the input when tokenizing.
            Defaults to `True`.
    """

    def __init__(self, do_lower_case=True):
        """Constructs a BasicTokenizer."""

        self.do_lower_case = do_lower_case

    def tokenize(self, text):
        """
        Tokenizes a piece of text using basic tokenizer.
        Args:
            text (str): A piece of text.
46
        Returns:
S
Steffy-zxf 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
            list(str): A list of tokens.
        Examples:
            .. code-block::
                from paddlenlp.transformers import BasicTokenizer
                basictokenizer = BasicTokenizer()
                tokens = basictokenizer.tokenize('He was a puppeteer')
                '''
                ['he', 'was', 'a', 'puppeteer']
                '''
        """

        text = convert_to_unicode(text)
        text = self._clean_text(text)
        text = self._tokenize_chinese_chars(text)

        orig_tokens = whitespace_tokenize(text)
        split_tokens = []
        for token in orig_tokens:
            if self.do_lower_case:
                token = token.lower()
                token = self._run_strip_accents(token)
            split_tokens.extend(self._run_split_on_punc(token))

        output_tokens = whitespace_tokenize(" ".join(split_tokens))
        return output_tokens

    def _run_strip_accents(self, text):
        """
        Strips accents from a piece of text.
        """
        text = unicodedata.normalize("NFD", text)
        output = []
        for char in text:
            cat = unicodedata.category(char)
            if cat == "Mn":
                continue
            output.append(char)
        return "".join(output)

    def _run_split_on_punc(self, text):
        """
        Splits punctuation on a piece of text.
        """
        chars = list(text)
        i = 0
        start_new_word = True
        output = []
        while i < len(chars):
            char = chars[i]
            if _is_punctuation(char):
                output.append([char])
                start_new_word = True
            else:
                if start_new_word:
                    output.append([])
                start_new_word = False
                output[-1].append(char)
            i += 1

        return ["".join(x) for x in output]

    def _tokenize_chinese_chars(self, text):
        """
        Adds whitespace around any CJK character.
        """
        output = []
        for char in text:
            cp = ord(char)
            if self._is_chinese_char(cp):
                output.append(" ")
                output.append(char)
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)

    def _is_chinese_char(self, cp):
        """
        Checks whether CP is the codepoint of a CJK character.
        """

        # This defines a "chinese character" as anything in the CJK Unicode block:
        #     https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
        #
        # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
        # despite its name. The modern Korean Hangul alphabet is a different block,
        # as is Japanese Hiragana and Katakana. Those alphabets are used to write
        # space-separated words, so they are not treated specially and handled
        # like the all of the other languages.
        if ((cp >= 0x4E00 and cp <= 0x9FFF) or  #
            (cp >= 0x3400 and cp <= 0x4DBF) or  #
            (cp >= 0x20000 and cp <= 0x2A6DF) or  #
            (cp >= 0x2A700 and cp <= 0x2B73F) or  #
            (cp >= 0x2B740 and cp <= 0x2B81F) or  #
            (cp >= 0x2B820 and cp <= 0x2CEAF) or
            (cp >= 0xF900 and cp <= 0xFAFF) or  #
            (cp >= 0x2F800 and cp <= 0x2FA1F)):  #
            return True

        return False

    def _clean_text(self, text):
        """
        Performs invalid character removal and whitespace cleanup on text.
        """
        output = []
        for char in text:
            cp = ord(char)
            if cp == 0 or cp == 0xfffd or _is_control(char):
                continue
            if _is_whitespace(char):
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)


class WordpieceTokenizer(object):
    """
    Runs WordPiece tokenization.
    Args:
        vocab (Vocab|dict):
            Vocab of the word piece tokenizer.
        unk_token (str):
            A specific token to replace all unknown tokens.
        max_input_chars_per_word (int):
            If a word's length is more than
            max_input_chars_per_word, it will be dealt as unknown word.
            Defaults to 100.
    """

    def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
        self.vocab = vocab
        self.unk_token = unk_token
        self.max_input_chars_per_word = max_input_chars_per_word

    def tokenize(self, text):
        """
        Tokenizes a piece of text into its word pieces.
        This uses a greedy longest-match-first algorithm to perform tokenization
        using the given vocabulary.
        Args:
            text: A single token or whitespace separated tokens. This should have
                already been passed through `BasicTokenizer`.
        Returns:
            list (str): A list of wordpiece tokens.
        Examples:
            .. code-block::
                from paddlenlp.transformers import BertTokenizer, WordpieceTokenizer
                berttokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
                vocab  = berttokenizer.vocab
                unk_token = berttokenizer.unk_token
                wordpiecetokenizer = WordpieceTokenizer(vocab,unk_token)
                inputs = wordpiecetokenizer.tokenize("unaffable")
                print(inputs)
                '''
                ["un", "##aff", "##able"]
                '''
        """

        output_tokens = []
        for token in whitespace_tokenize(text):
            chars = list(token)
            if len(chars) > self.max_input_chars_per_word:
                output_tokens.append(self.unk_token)
                continue

            is_bad = False
            start = 0
            sub_tokens = []
            while start < len(chars):
                end = len(chars)
                cur_substr = None
                while start < end:
                    substr = "".join(chars[start:end])
                    if start > 0:
                        substr = "##" + substr
                    if substr in self.vocab:
                        cur_substr = substr
                        break
                    end -= 1
                if cur_substr is None:
                    is_bad = True
                    break
                sub_tokens.append(cur_substr)
                start = end

            if is_bad:
                output_tokens.append(self.unk_token)
            else:
                output_tokens.extend(sub_tokens)
        return output_tokens


class BertTokenizer(PretrainedTokenizer):
    """
    Constructs a BERT tokenizer. It uses a basic tokenizer to do punctuation
    splitting, lower casing and so on, and follows a WordPiece tokenizer to
    tokenize as subwords.
    Args:
        vocab_file (str):
            The vocabulary file path (ends with '.txt') required to instantiate
            a `WordpieceTokenizer`.
        do_lower_case (bool):
            Whether or not to lowercase the input when tokenizing.
            Defaults to`True`.
        unk_token (str):
            A special token representing the *unknown (out-of-vocabulary)* token.
            An unknown token is set to be `unk_token` inorder to be converted to an ID.
            Defaults to "[UNK]".
        sep_token (str):
            A special token separating two different sentences in the same input.
            Defaults to "[SEP]".
        pad_token (str):
            A special token used to make arrays of tokens the same size for batching purposes.
            Defaults to "[PAD]".
        cls_token (str):
            A special token used for sequence classification. It is the last token
            of the sequence when built with special tokens. Defaults to "[CLS]".
        mask_token (str):
            A special token representing a masked token. This is the token used
            in the masked language modeling task which the model tries to predict the original unmasked ones.
            Defaults to "[MASK]".
    Examples:
        .. code-block::
            from paddlenlp.transformers import BertTokenizer
            berttokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
            inputs = berttokenizer.tokenize('He was a puppeteer')
            print(inputs)
            '''
            {'input_ids': [101, 2002, 2001, 1037, 13997, 11510, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0]}
            '''
    """
    resource_files_names = {"vocab_file": "vocab.txt"}  # for save_pretrained
    pretrained_resource_files_map = {
        "vocab_file": {
            "bert-base-uncased":
            "https://paddle-hapi.bj.bcebos.com/models/bert/bert-base-uncased-vocab.txt",
            "bert-large-uncased":
            "https://paddle-hapi.bj.bcebos.com/models/bert/bert-large-uncased-vocab.txt",
            "bert-base-cased":
            "https://paddle-hapi.bj.bcebos.com/models/bert/bert-base-cased-vocab.txt",
            "bert-large-cased":
            "https://paddle-hapi.bj.bcebos.com/models/bert/bert-large-cased-vocab.txt",
            "bert-base-multilingual-uncased":
            "https://paddle-hapi.bj.bcebos.com/models/bert/bert-base-multilingual-uncased-vocab.txt",
            "bert-base-multilingual-cased":
            "https://paddle-hapi.bj.bcebos.com/models/bert/bert-base-multilingual-cased-vocab.txt",
            "bert-base-chinese":
            "https://paddle-hapi.bj.bcebos.com/models/bert/bert-base-chinese-vocab.txt",
            "bert-wwm-chinese":
            "http://paddlenlp.bj.bcebos.com/models/transformers/bert/bert-wwm-chinese-vocab.txt",
            "bert-wwm-ext-chinese":
            "http://paddlenlp.bj.bcebos.com/models/transformers/bert/bert-wwm-ext-chinese-vocab.txt",
            "macbert-large-chinese":
            "https://paddle-hapi.bj.bcebos.com/models/bert/bert-base-chinese-vocab.txt",
            "macbert-base-chinese":
            "https://paddle-hapi.bj.bcebos.com/models/bert/bert-base-chinese-vocab.txt",
            "simbert-base-chinese":
            "https://paddlenlp.bj.bcebos.com/models/transformers/simbert/vocab.txt",
        }
    }
    pretrained_init_configuration = {
        "bert-base-uncased": {
            "do_lower_case": True
        },
        "bert-large-uncased": {
            "do_lower_case": True
        },
        "bert-base-cased": {
            "do_lower_case": False
        },
        "bert-large-cased": {
            "do_lower_case": False
        },
        "bert-base-multilingual-uncased": {
            "do_lower_case": True
        },
        "bert-base-multilingual-cased": {
            "do_lower_case": False
        },
        "bert-base-chinese": {
            "do_lower_case": False
        },
        "bert-wwm-chinese": {
            "do_lower_case": False
        },
        "bert-wwm-ext-chinese": {
            "do_lower_case": False
        },
        "macbert-large-chinese": {
            "do_lower_case": False
        },
        "macbert-base-chinese": {
            "do_lower_case": False
        },
        "simbert-base-chinese": {
            "do_lower_case": True
        },
    }
    padding_side = 'right'

    def __init__(self,
                 vocab_file,
                 do_lower_case=True,
                 unk_token="[UNK]",
                 sep_token="[SEP]",
                 pad_token="[PAD]",
                 cls_token="[CLS]",
                 mask_token="[MASK]"):

        if not os.path.isfile(vocab_file):
            raise ValueError(
                "Can't find a vocabulary file at path '{}'. To load the "
                "vocabulary from a pretrained model please use "
                "`tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
                .format(vocab_file))
        self.vocab = self.load_vocabulary(vocab_file, unk_token=unk_token)
        self.do_lower_case = do_lower_case
        self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
367 368
        self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab,
                                                      unk_token=unk_token)
S
Steffy-zxf 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
        self.special_tokens_map = {
            'unk_token': unk_token,
            'sep_token': sep_token,
            'pad_token': pad_token,
            'cls_token': cls_token,
            'mask_token': mask_token
        }

    @property
    def vocab_size(self):
        """
        Return the size of vocabulary.
        Returns:
            int: The size of vocabulary.
        """

        return len(self.vocab)

    def _tokenize(self, text):
        """
        End-to-end tokenization for BERT models.
        Args:
            text (str): The text to be tokenized.
392

S
Steffy-zxf 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406
        Returns:
            list: A list of string representing converted tokens.
        """
        split_tokens = []
        for token in self.basic_tokenizer.tokenize(text):
            for sub_token in self.wordpiece_tokenizer.tokenize(token):
                split_tokens.append(sub_token)
        return split_tokens

    def tokenize(self, text):
        """
        Converts a string to a list of tokens.
        Args:
            text (str): The text to be tokenized.
407

S
Steffy-zxf 已提交
408 409 410 411 412 413 414
        Returns:
            List(str): A list of string representing converted tokens.
        Examples:
            .. code-block::
                from paddlenlp.transformers import BertTokenizer
                berttokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
                tokens = berttokenizer.tokenize('He was a puppeteer')
415

S
Steffy-zxf 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
                '''
                ['he', 'was', 'a', 'puppet', '##eer']
                '''
        """

        return self._tokenize(text)

    def num_special_tokens_to_add(self, pair=False):
        """
        Returns the number of added tokens when encoding a sequence with special tokens.
        Args:
            pair(bool):
                Whether the input is a sequence pair or a single sequence.
                Defaults to `False` and the input is a single sequence.
        Returns:
            int: Number of tokens added to sequences.
        """
        token_ids_0 = []
        token_ids_1 = []
        return len(
436 437
            self.build_inputs_with_special_tokens(
                token_ids_0, token_ids_1 if pair else None))
S
Steffy-zxf 已提交
438 439 440 441

    def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
        """
        Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
442 443
        adding special tokens.

S
Steffy-zxf 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
        A BERT sequence has the following format:
        - single sequence:      ``[CLS] X [SEP]``
        - pair of sequences:        ``[CLS] A [SEP] B [SEP]``
        Args:
            token_ids_0 (List[int]):
                List of IDs to which the special tokens will be added.
            token_ids_1 (List[int], optional):
                Optional second list of IDs for sequence pairs. Defaults to None.
        Returns:
            List[int]: List of input_id with the appropriate special tokens.
        """
        if token_ids_1 is None:
            return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
        _cls = [self.cls_token_id]
        _sep = [self.sep_token_id]
        return _cls + token_ids_0 + _sep + token_ids_1 + _sep

    def create_token_type_ids_from_sequences(self,
                                             token_ids_0,
                                             token_ids_1=None):
        """
465
        Create a mask from the two sequences passed to be used in a sequence-pair classification task.
S
Steffy-zxf 已提交
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
        A BERT sequence pair mask has the following format:
        ::
            0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
            | first sequence    | second sequence |
        If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s).
        Args:
            token_ids_0 (List[int]):
                A list of `inputs_ids` for the first sequence.
            token_ids_1 (List[int], optional):
                Optional second list of IDs for sequence pairs. Defaults to None.
        Returns:
            List[int]: List of token_type_id according to the given sequence(s).
        """
        _sep = [self.sep_token_id]
        _cls = [self.cls_token_id]
        if token_ids_1 is None:
            return len(_cls + token_ids_0 + _sep) * [0]
        return len(_cls + token_ids_0 + _sep) * [0] + len(token_ids_1 +
                                                          _sep) * [1]

    def get_special_tokens_mask(self,
                                token_ids_0,
                                token_ids_1=None,
                                already_has_special_tokens=False):
        """
        Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer ``encode`` methods.
        Args:
            token_ids_0 (List[int]):
                A list of `inputs_ids` for the first sequence.
            token_ids_1 (List[int], optinal):
                Optional second list of IDs for sequence pairs. Defaults to None.
498
            already_has_special_tokens (bool, optional): Whether or not the token list is already
S
Steffy-zxf 已提交
499 500 501 502 503 504 505 506 507 508 509 510
                formatted with special tokens for the model. Defaults to None.
        Returns:
            List[int]: The list of integers either be 0 or 1: 1 for a special token, 0 for a sequence token.
        """

        if already_has_special_tokens:
            if token_ids_1 is not None:
                raise ValueError(
                    "You should not supply a second sequence if the provided sequence of "
                    "ids is already formatted with special tokens for the model."
                )
            return list(
511 512 513
                map(
                    lambda x: 1
                    if x in [self.sep_token_id, self.cls_token_id] else 0,
S
Steffy-zxf 已提交
514 515 516 517 518 519
                    token_ids_0))

        if token_ids_1 is not None:
            return [1] + ([0] * len(token_ids_0)) + [1] + (
                [0] * len(token_ids_1)) + [1]
        return [1] + ([0] * len(token_ids_0)) + [1]