tensor.cc 14.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/include/tensor.h"
16 17 18 19 20 21

#include <memory>
#include <utility>
#include <vector>

#include "glog/logging.h"
22

23
#include "paddle/phi/api/lib/utils/allocator.h"
24 25
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/core/ddim.h"
26
#include "paddle/phi/core/dense_tensor.h"
27
#include "paddle/phi/core/enforce.h"
28
#include "paddle/phi/core/selected_rows.h"
29 30
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
31 32 33
#include "paddle/phi/core/tensor_base.h"
#include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/core/tensor_utils.h"
34

35 36 37 38
#include "paddle/fluid/platform/stream/cuda_stream.h"

namespace paddle {
namespace experimental {
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
namespace detail {
static Place GetCorrectPlaceByPlaceType(const Place &place_type) {
  auto alloc_type = place_type.GetType();
  switch (alloc_type) {
    case AllocationType::CPU:
      return place_type;
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    case AllocationType::GPU:
      return phi::Place(AllocationType::GPU,
                        phi::backends::gpu::GetCurrentDeviceId());
#endif
    default:
      PADDLE_THROW(phi::errors::Unavailable(
          "The PlaceType is a legacy design, only supports CPU and GPU, "
          "and will not support other place types in the future."));
  }
}
}  // namespace detail
57 58 59 60 61

/////// Tensor Methods ////////

/* Part 1: Construction and destruction methods */

62
Tensor::Tensor(std::shared_ptr<phi::TensorBase> tensor_impl)
63
    : impl_(std::move(tensor_impl)) {
64 65 66
  PADDLE_ENFORCE_NOT_NULL(
      impl_,
      phi::errors::InvalidArgument("TensorImpl with nullptr is not supported"));
67 68
}

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
Tensor::Tensor(const Place &place) {
  LOG(WARNING) << "The Tensor(place) constructor is deprecated since version "
                  "2.3, and will be removed in version 2.4! Please use "
                  "`paddle::empty/full` method to create a new "
                  "Tensor instead. "
                  "Reason: A legal tensor cannot be constructed only based on "
                  "the `place`, and datatype, shape, layout, etc. is also "
                  "required.";
  DefaultAllocator alloc(detail::GetCorrectPlaceByPlaceType(place));
  impl_ = std::move(std::make_shared<phi::DenseTensor>(
      &alloc,
      std::move(phi::DenseTensorMeta(
          phi::DataType::FLOAT32, phi::make_ddim({}), phi::DataLayout::NCHW))));
}

Tensor::Tensor(const Place &place, const std::vector<int64_t> &shape) {
  LOG(WARNING) << "The Tensor(place, shape) constructor is deprecated since "
                  "version 2.3, and will be removed in version 2.4! Please use "
                  "`paddle::empty/full` method to create a new "
                  "Tensor instead. "
                  "Reason: A legal tensor cannot be constructed only based on "
                  "the `place` and `shape`, and datatype, layout, etc. is also "
                  "required.";
  DefaultAllocator alloc(detail::GetCorrectPlaceByPlaceType(place));
  impl_ = std::move(std::make_shared<phi::DenseTensor>(
      &alloc,
      std::move(phi::DenseTensorMeta(phi::DataType::FLOAT32,
                                     phi::make_ddim({shape}),
                                     phi::DataLayout::NCHW))));
}
99

100
Tensor::Tensor(std::shared_ptr<phi::TensorBase> tensor_impl,
101 102
               const std::string &name)
    : impl_(std::move(tensor_impl)), name_(std::move(name)) {}
103

104 105 106 107 108 109
/* Part 2: Dimension, DataType and DataLayout methods */

int64_t Tensor::numel() const { return impl_->numel(); }

int64_t Tensor::size() const { return impl_->numel(); }

110
phi::DDim Tensor::dims() const { return impl_->dims(); }
111 112

std::vector<int64_t> Tensor::shape() const {
113 114 115 116 117
  auto dims = impl_->dims();
  if (dims.size() == 1 && dims.at(0) == 0) {
    return {};
  }
  return phi::vectorize<int64_t>(dims);
118 119 120
}

void Tensor::reshape(const std::vector<int64_t> &shape) {
121 122 123
  LOG(WARNING) << "The function of resetting the shape of the uninitialized "
                  "Tensor of the `reshape` method is deprecated since version "
                  "2.3, and will be removed in version 2.4, please use "
124
                  "`paddle::empty/full` method to create a new Tensor "
125 126 127 128
                  "instead. "
                  "reason: `reshape` means changing the tensor shape without "
                  "touching underlying data, this requires the total size of "
                  "the tensor to remain constant.";
C
Chen Weihang 已提交
129
  if (is_dense_tensor()) {
130
    static_cast<phi::DenseTensor *>(impl_.get())->Resize(phi::make_ddim(shape));
131
  } else {
132
    PADDLE_THROW(phi::errors::Unimplemented(
133 134
        "Only support reshape operation on DenseTensor now."));
  }
135 136
}

137
DataType Tensor::dtype() const { return impl_->dtype(); }
138

139
DataType Tensor::type() const { return impl_->dtype(); }
140 141 142

DataLayout Tensor::layout() const { return impl_->layout(); }

C
Chen Weihang 已提交
143
bool Tensor::is_dense_tensor() const {
144
  return phi::DenseTensor::classof(impl_.get());
C
Chen Weihang 已提交
145
}
146
bool Tensor::is_selected_rows() const {
147
  return phi::SelectedRows::classof(impl_.get());
148
}
149 150 151 152 153 154
bool Tensor::is_sparse_coo_tensor() const {
  return phi::SparseCooTensor::classof(impl_.get());
}
bool Tensor::is_sparse_csr_tensor() const {
  return phi::SparseCsrTensor::classof(impl_.get());
}
155 156
/* Part 3: Device and Backend methods */

157 158 159 160 161 162 163
Place Tensor::place() const {
  PADDLE_ENFORCE_NOT_NULL(
      impl_,
      phi::errors::PermissionDenied(
          "Null pointer error, the impl_ of Tensor should not be "
          "Null when calling Tensor::place()."));
  return impl_->place();
164 165
}

C
Chen Weihang 已提交
166
bool Tensor::is_cpu() const { return paddle::platform::is_cpu_place(place()); }
167

C
Chen Weihang 已提交
168
bool Tensor::is_gpu() const { return paddle::platform::is_gpu_place(place()); }
169

170
bool Tensor::is_gpu_pinned() const {
C
Chen Weihang 已提交
171
  return paddle::platform::is_cuda_pinned_place(place());
172 173
}

174 175 176 177
/* Part 4: Data Access methods */

template <typename T>
T *Tensor::mutable_data() {
178 179 180 181 182 183 184 185 186
  LOG(WARNING) << "Allocating memory through `mutable_data` method is "
                  "deprecated since version 2.3, and `mutable_data` method "
                  "will be removed in version 2.4! Please use "
                  "`paddle::empty/full` method to create a new "
                  "Tensor with allocated memory, and use data<T>() method "
                  "to get the memory pointer of tensor instead. "
                  "Reason: When calling `mutable_data` to allocate memory, "
                  "the place, datatype, and data layout of tensor may be in "
                  "an illegal state.";
C
Chen Weihang 已提交
187
  if (is_dense_tensor()) {
188 189
    return static_cast<phi::DenseTensor *>(impl_.get())
        ->mutable_data<T>(place());
190 191 192 193
  }
  return nullptr;
}

194 195 196 197 198 199 200 201
template PADDLE_API float *Tensor::mutable_data<float>();
template PADDLE_API double *Tensor::mutable_data<double>();
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>();
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>();
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>();
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>();
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>();
template PADDLE_API bool *Tensor::mutable_data<bool>();
202 203 204 205 206 207
template PADDLE_API phi::dtype::complex<float>
    *Tensor::mutable_data<phi::dtype::complex<float>>();
template PADDLE_API phi::dtype::complex<double>
    *Tensor::mutable_data<phi::dtype::complex<double>>();
template PADDLE_API phi::dtype::float16 *
Tensor::mutable_data<phi::dtype::float16>();
208 209

template <typename T>
210 211 212 213 214 215 216 217 218 219
T *Tensor::mutable_data(const Place &place) {
  LOG(WARNING) << "Allocating memory through `mutable_data` method is "
                  "deprecated since version 2.3, and `mutable_data` method "
                  "will be removed in version 2.4! Please use "
                  "`paddle::empty/full` method to create a new "
                  "Tensor with allocated memory, and use data<T>() method "
                  "to get the memory pointer of tensor instead. "
                  "Reason: When calling `mutable_data` to allocate memory, "
                  "the datatype, and data layout of tensor may be in "
                  "an illegal state.";
220
  if (is_dense_tensor()) {
221
    return static_cast<phi::DenseTensor *>(impl_.get())->mutable_data<T>(place);
222 223
  }
  return nullptr;
224 225
}

226 227 228 229 230 231 232 233
template PADDLE_API float *Tensor::mutable_data<float>(const Place &place);
template PADDLE_API double *Tensor::mutable_data<double>(const Place &place);
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>(const Place &place);
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>(const Place &place);
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>(const Place &place);
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>(const Place &place);
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>(const Place &place);
template PADDLE_API bool *Tensor::mutable_data<bool>(const Place &place);
234
template PADDLE_API phi::dtype::complex<float>
235
    *Tensor::mutable_data<phi::dtype::complex<float>>(const Place &place);
236
template PADDLE_API phi::dtype::complex<double>
237
    *Tensor::mutable_data<phi::dtype::complex<double>>(const Place &place);
238
template PADDLE_API phi::dtype::float16 *
239
Tensor::mutable_data<phi::dtype::float16>(const Place &place);
240 241 242

template <typename T>
const T *Tensor::data() const {
C
Chen Weihang 已提交
243
  if (is_dense_tensor()) {
244 245 246
    return static_cast<phi::DenseTensor *>(impl_.get())->data<T>();
  } else if (is_selected_rows()) {
    return static_cast<phi::SelectedRows *>(impl_.get())->value().data<T>();
247 248 249 250
  }
  return nullptr;
}

251 252 253 254 255 256 257 258
template PADDLE_API const float *Tensor::data<float>() const;
template PADDLE_API const double *Tensor::data<double>() const;
template PADDLE_API const int64_t *Tensor::data<int64_t>() const;
template PADDLE_API const int32_t *Tensor::data<int32_t>() const;
template PADDLE_API const uint8_t *Tensor::data<uint8_t>() const;
template PADDLE_API const int8_t *Tensor::data<int8_t>() const;
template PADDLE_API const int16_t *Tensor::data<int16_t>() const;
template PADDLE_API const bool *Tensor::data<bool>() const;
259 260 261 262 263 264 265 266
template PADDLE_API const phi::dtype::complex<float>
    *Tensor::data<phi::dtype::complex<float>>() const;
template PADDLE_API const phi::dtype::complex<double>
    *Tensor::data<phi::dtype::complex<double>>() const;
template PADDLE_API const phi::dtype::float16 *
Tensor::data<phi::dtype::float16>() const;
template PADDLE_API const phi::dtype::bfloat16 *
Tensor::data<phi::dtype::bfloat16>() const;
267 268 269

template <typename T>
T *Tensor::data() {
270
  if (is_dense_tensor()) {
271 272 273
    return static_cast<phi::DenseTensor *>(impl_.get())->data<T>();
  } else if (is_selected_rows()) {
    return static_cast<phi::SelectedRows *>(impl_.get())
274 275 276
        ->mutable_value()
        ->data<T>();
  }
277 278 279
  return nullptr;
}

280 281 282 283 284 285 286 287
template PADDLE_API float *Tensor::data<float>();
template PADDLE_API double *Tensor::data<double>();
template PADDLE_API int64_t *Tensor::data<int64_t>();
template PADDLE_API int32_t *Tensor::data<int32_t>();
template PADDLE_API uint8_t *Tensor::data<uint8_t>();
template PADDLE_API int8_t *Tensor::data<int8_t>();
template PADDLE_API int16_t *Tensor::data<int16_t>();
template PADDLE_API bool *Tensor::data<bool>();
288 289 290 291 292
template PADDLE_API phi::dtype::complex<float>
    *Tensor::data<phi::dtype::complex<float>>();
template PADDLE_API phi::dtype::complex<double>
    *Tensor::data<phi::dtype::complex<double>>();
template PADDLE_API phi::dtype::float16 *Tensor::data<phi::dtype::float16>();
293

294
// TODO(chenweihang): replace slice impl by API
295
Tensor Tensor::slice(int64_t begin_idx, int64_t end_idx) const {
C
Chen Weihang 已提交
296
  if (is_dense_tensor()) {
297 298
    return Tensor(std::make_shared<phi::DenseTensor>(
        std::move(phi::DenseTensorUtils::Slice(
299
            *(static_cast<phi::DenseTensor *>(impl_.get())),
300 301 302
            begin_idx,
            end_idx))));
  } else {
303
    PADDLE_THROW(phi::errors::Unimplemented(
304
        "Only support slice operation on DenseTensor now."));
305
  }
306 307
}

308
const std::shared_ptr<phi::TensorBase> &Tensor::impl() const { return impl_; }
309

310
void Tensor::set_impl(const std::shared_ptr<phi::TensorBase> &impl) {
311 312 313
  impl_ = impl;
}

314 315 316 317
void Tensor::set_impl(std::shared_ptr<phi::TensorBase> &&impl) {
  impl_ = std::move(impl);
}

318 319 320 321 322 323
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
gpuStream_t Tensor::stream() const {
  return platform::stream::get_current_stream(-1)->raw_stream();
}
#endif

324
/* Part 5: Status utils methods */
325 326 327

bool Tensor::defined() const { return impl_ != nullptr; }

328
bool Tensor::initialized() const { return defined() && impl_->initialized(); }
329 330

bool Tensor::is_initialized() const {
331 332 333
  LOG(WARNING) << "The `is_initialized` method is deprecated since version "
                  "2.3, and will be removed in version 2.4! "
                  "Please use `initialized` method instead.";
334
  return defined() && impl_->initialized();
335 336 337 338
}

void Tensor::reset() { impl_.reset(); }

339
/* Part 6: Operator overloading */
340 341 342 343

Tensor &Tensor::operator=(const Tensor &x) & {
  impl_ = x.impl_;
  autograd_meta_ = x.autograd_meta_;
344
  name_ = x.name_;
345 346 347 348 349 350
  return *this;
}

Tensor &Tensor::operator=(Tensor &&x) & {
  impl_ = std::move(x.impl_);
  autograd_meta_ = std::move(x.autograd_meta_);
351
  name_ = std::move(x.name_);
352 353 354 355 356 357 358
  return *this;
}

AbstractAutogradMeta *Tensor::get_autograd_meta() const {
  return autograd_meta_.get();
}

359 360 361 362 363
const std::shared_ptr<AbstractAutogradMeta> &Tensor::mutable_autograd_meta()
    const {
  return autograd_meta_;
}

364 365 366 367 368
void Tensor::set_autograd_meta(
    std::shared_ptr<AbstractAutogradMeta> autograd_meta) {
  autograd_meta_ = std::move(autograd_meta);
}

369 370 371
void Tensor::bump_inplace_version() {
  if (is_dense_tensor()) {
    auto &inplace_version_counter =
372
        static_cast<phi::DenseTensor *>(impl_.get())->InplaceVersionCounter();
373 374 375 376 377 378 379 380 381 382
    inplace_version_counter.Bump();
  } else {
    PADDLE_THROW(phi::errors::Unimplemented(
        "bump_inplace_version is only supported on DenseTensor now."));
  }
}

uint32_t Tensor::current_inplace_version() {
  if (is_dense_tensor()) {
    auto &inplace_version_counter =
383
        static_cast<phi::DenseTensor *>(impl_.get())->InplaceVersionCounter();
384 385 386 387 388 389 390 391
    return inplace_version_counter.CurrentVersion();
  } else {
    PADDLE_THROW(phi::errors::Unimplemented(
        "current_inplace_version is only supported on DenseTensor now."));
  }
  return 0;
}

392 393 394 395
void Tensor::reset_inplace_version(bool set_to_zero) {
  if (set_to_zero) {
    if (is_dense_tensor()) {
      auto &inplace_version_counter =
396
          static_cast<phi::DenseTensor *>(impl_.get())->InplaceVersionCounter();
397 398 399 400 401
      inplace_version_counter.SetInplaceVersionToZero();
    }
  }
}

402 403
}  // namespace experimental
}  // namespace paddle