tensor.cc 14.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/pten/api/include/tensor.h"

#include <memory>
#include <utility>
#include <vector>

#include "glog/logging.h"
22
#include "paddle/pten/api/include/utils.h"
23 24 25
#include "paddle/pten/api/lib/ext_compat_utils.h"
#include "paddle/pten/api/lib/utils/allocator.h"
#include "paddle/pten/api/lib/utils/storage.h"
26
#include "paddle/pten/core/compat/convert_utils.h"
27 28 29
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/tensor_base.h"
#include "paddle/pten/core/tensor_meta.h"
30
#include "paddle/pten/core/tensor_utils.h"
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

/**
 * [ Why still include the fluid headers? ]
 *
 * We hope to organize the basic implementation of Tensor and the logic related
 * to Tensor computation into an independent library, which we call
 * [Tensor Operation Library, pten], so we extract or rewrite the original
 * Kernels.
 *
 * In the future, the training library, inference library and custom operators
 * will link to this Tensor Operation library.
 *
 * However, if we directly split the link relation, we need to make too many
 * changes, which will affect the stability of the framework, so here we still
 * rely on the implementation of the framework, which is a intermediate state.
 *
 * In the future, the necessary components will be moved to the this library,
 * or the corresponding components will be re-implemented.
 */
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/stream/cuda_stream.h"
53 54
#include "paddle/pten/common/complex.h"
#include "paddle/pten/common/float16.h"
55
#include "paddle/pten/core/ddim.h"
56
#include "paddle/pten/core/enforce.h"
57 58 59 60

namespace paddle {
namespace experimental {

61 62 63
// declare cast api
Tensor cast(const Tensor &x, DataType out_dtype);

64 65 66 67 68 69 70
/////// Tensor Methods ////////

/* Part 1: Construction and destruction methods */

Tensor::Tensor(std::shared_ptr<pten::TensorBase> tensor_impl)
    : impl_(std::move(tensor_impl)) {
  PADDLE_ENFORCE_NOT_NULL(impl_,
71
                          pten::errors::InvalidArgument(
72 73 74 75 76 77 78 79
                              "TensorImpl with nullptr is not supported"));
}

Tensor::Tensor(const PlaceType &place)
    : impl_(std::move(std::make_shared<pten::DenseTensor>(
          std::move(pten::make_intrusive<SharedStorage>(
              ConvertExtPlaceToInnerPlace(place))),
          std::move(pten::DenseTensorMeta(pten::DataType::UNDEFINED,
80
                                          pten::framework::make_ddim({}),
81 82
                                          pten::DataLayout::NCHW))))),
      place_{place} {}
83 84 85 86 87 88

Tensor::Tensor(const PlaceType &place, const std::vector<int64_t> &shape)
    : impl_(std::move(std::make_shared<pten::DenseTensor>(
          std::move(pten::make_intrusive<SharedStorage>(
              ConvertExtPlaceToInnerPlace(place))),
          std::move(pten::DenseTensorMeta(pten::DataType::UNDEFINED,
89
                                          pten::framework::make_ddim(shape),
90 91
                                          pten::DataLayout::NCHW))))),
      place_{place} {}
92 93 94 95 96 97 98

/* Part 2: Dimension, DataType and DataLayout methods */

int64_t Tensor::numel() const { return impl_->numel(); }

int64_t Tensor::size() const { return impl_->numel(); }

99
pten::framework::DDim Tensor::dims() const { return impl_->dims(); }
100 101

std::vector<int64_t> Tensor::shape() const {
102
  return pten::framework::vectorize<int64_t>(impl_->dims());
103 104 105
}

void Tensor::reshape(const std::vector<int64_t> &shape) {
106 107 108 109 110 111 112 113
  LOG(WARNING) << "The function of resetting the shape of the uninitialized "
                  "Tensor of the `reshape` method is deprecated since version "
                  "2.3, and will be removed in version 2.4, please use "
                  "`paddle::experimental::full` method to create a new Tensor "
                  "instead. "
                  "reason: `reshape` means changing the tensor shape without "
                  "touching underlying data, this requires the total size of "
                  "the tensor to remain constant.";
C
Chen Weihang 已提交
114
  if (is_dense_tensor()) {
115
    std::dynamic_pointer_cast<pten::DenseTensor>(impl_)->set_meta(
116
        pten::DenseTensorMeta(dtype(), pten::framework::make_ddim(shape)));
117
  } else {
118
    PADDLE_THROW(pten::errors::Unimplemented(
119 120
        "Only support reshape operation on DenseTensor now."));
  }
121 122
}

123
DataType Tensor::dtype() const { return impl_->dtype(); }
124

125
DataType Tensor::type() const { return impl_->dtype(); }
126 127 128

DataLayout Tensor::layout() const { return impl_->layout(); }

C
Chen Weihang 已提交
129 130 131 132
bool Tensor::is_dense_tensor() const {
  return pten::DenseTensor::classof(impl_.get());
}

133 134 135
/* Part 3: Device and Backend methods */

PlaceType Tensor::place() const {
136 137 138 139 140
  if (!impl_->initialized()) {
    return place_;
  } else {
    return ConvertInnerPlaceToExtPlace(impl_->place());
  }
141 142
}

143 144 145
paddle::platform::Place Tensor::inner_place() const {
  return ConvertExtPlaceToInnerPlace(place());
}
146 147

bool Tensor::is_cpu() const {
148
  return paddle::platform::is_cpu_place(inner_place());
149 150 151
}

bool Tensor::is_cuda() const {
152
  return paddle::platform::is_gpu_place(inner_place());
153 154 155 156 157 158
}

/* Part 4: Data Access methods */

template <typename T>
T *Tensor::mutable_data() {
C
Chen Weihang 已提交
159
  if (is_dense_tensor()) {
160 161
    return std::dynamic_pointer_cast<pten::DenseTensor>(impl_)->mutable_data<T>(
        ConvertExtPlaceToInnerPlace(place()));
162 163 164 165
  }
  return nullptr;
}

166 167 168 169 170 171 172 173 174
template PADDLE_API float *Tensor::mutable_data<float>();
template PADDLE_API double *Tensor::mutable_data<double>();
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>();
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>();
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>();
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>();
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>();
template PADDLE_API bool *Tensor::mutable_data<bool>();
template PADDLE_API paddle::platform::complex<float>
175
    *Tensor::mutable_data<paddle::platform::complex<float>>();
176
template PADDLE_API paddle::platform::complex<double>
177
    *Tensor::mutable_data<paddle::platform::complex<double>>();
178
template PADDLE_API paddle::platform::float16 *
179 180 181 182 183
Tensor::mutable_data<paddle::platform::float16>();

template <typename T>
T *Tensor::mutable_data(const PlaceType &place) {
  auto inner_place = ConvertExtPlaceToInnerPlace(place);
184 185 186 187
  if (impl_->initialized()) {
    PADDLE_ENFORCE_EQ(
        platform::is_same_place(inner_place, impl_->place()),
        true,
188 189
        pten::errors::Unimplemented("Modification of tensor place through "
                                    "mutable_data is not supported now"));
190 191 192 193 194 195
  }
  if (is_dense_tensor()) {
    return std::dynamic_pointer_cast<pten::DenseTensor>(impl_)->mutable_data<T>(
        inner_place);
  }
  return nullptr;
196 197
}

198 199
template PADDLE_API float *Tensor::mutable_data<float>(const PlaceType &place);
template PADDLE_API double *Tensor::mutable_data<double>(
200
    const PlaceType &place);
201
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>(
202
    const PlaceType &place);
203
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>(
204
    const PlaceType &place);
205
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>(
206
    const PlaceType &place);
207
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>(
208
    const PlaceType &place);
209
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>(
210
    const PlaceType &place);
211 212
template PADDLE_API bool *Tensor::mutable_data<bool>(const PlaceType &place);
template PADDLE_API paddle::platform::complex<float> *
213
Tensor::mutable_data<paddle::platform::complex<float>>(const PlaceType &place);
214
template PADDLE_API paddle::platform::complex<double> *
215
Tensor::mutable_data<paddle::platform::complex<double>>(const PlaceType &place);
216
template PADDLE_API paddle::platform::float16 *
217 218 219 220
Tensor::mutable_data<paddle::platform::float16>(const PlaceType &place);

template <typename T>
const T *Tensor::data() const {
C
Chen Weihang 已提交
221
  if (is_dense_tensor()) {
222 223
    return std::dynamic_pointer_cast<pten::DenseTensor>(impl_)->mutable_data<T>(
        ConvertExtPlaceToInnerPlace(place()));
224 225 226 227
  }
  return nullptr;
}

228 229 230 231 232 233 234 235 236
template PADDLE_API const float *Tensor::data<float>() const;
template PADDLE_API const double *Tensor::data<double>() const;
template PADDLE_API const int64_t *Tensor::data<int64_t>() const;
template PADDLE_API const int32_t *Tensor::data<int32_t>() const;
template PADDLE_API const uint8_t *Tensor::data<uint8_t>() const;
template PADDLE_API const int8_t *Tensor::data<int8_t>() const;
template PADDLE_API const int16_t *Tensor::data<int16_t>() const;
template PADDLE_API const bool *Tensor::data<bool>() const;
template PADDLE_API const paddle::platform::complex<float>
237
    *Tensor::data<paddle::platform::complex<float>>() const;
238
template PADDLE_API const paddle::platform::complex<double>
239
    *Tensor::data<paddle::platform::complex<double>>() const;
240
template PADDLE_API const paddle::platform::float16 *
241
Tensor::data<paddle::platform::float16>() const;
242
template PADDLE_API const paddle::platform::bfloat16 *
243
Tensor::data<paddle::platform::bfloat16>() const;
244 245 246

template <typename T>
T *Tensor::data() {
247
  PADDLE_THROW(pten::errors::Unimplemented(
248 249 250 251 252 253
      "It is not currently supported to directly obtain the modifiable data "
      "address through the tensor::data<T>() method, please use the "
      "tensor::mutable_data<T>() method."));
  return nullptr;
}

254 255 256 257 258 259 260 261 262
template PADDLE_API float *Tensor::data<float>();
template PADDLE_API double *Tensor::data<double>();
template PADDLE_API int64_t *Tensor::data<int64_t>();
template PADDLE_API int32_t *Tensor::data<int32_t>();
template PADDLE_API uint8_t *Tensor::data<uint8_t>();
template PADDLE_API int8_t *Tensor::data<int8_t>();
template PADDLE_API int16_t *Tensor::data<int16_t>();
template PADDLE_API bool *Tensor::data<bool>();
template PADDLE_API paddle::platform::complex<float>
263
    *Tensor::data<paddle::platform::complex<float>>();
264
template PADDLE_API paddle::platform::complex<double>
265
    *Tensor::data<paddle::platform::complex<double>>();
266
template PADDLE_API paddle::platform::float16 *
267 268
Tensor::data<paddle::platform::float16>();

269
// TODO(chenweihang): replace slice impl by API
270
Tensor Tensor::slice(int64_t begin_idx, int64_t end_idx) const {
C
Chen Weihang 已提交
271
  if (is_dense_tensor()) {
272
    return Tensor(std::make_shared<pten::DenseTensor>(
273
        std::move(pten::DenseTensorUtils::Slice(
274
            *(std::dynamic_pointer_cast<pten::DenseTensor>(impl_).get()),
275 276 277
            begin_idx,
            end_idx))));
  } else {
278
    PADDLE_THROW(pten::errors::Unimplemented(
279
        "Only support slice operation on DenseTensor now."));
280
  }
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
}

std::shared_ptr<pten::TensorBase> Tensor::impl() const { return impl_; }

void Tensor::set_impl(const std::shared_ptr<pten::TensorBase> &impl) {
  impl_ = impl;
}

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
gpuStream_t Tensor::stream() const {
  return platform::stream::get_current_stream(-1)->raw_stream();
}
#endif

/* Part 5: Data Transform methods */

template <typename T>
Tensor Tensor::copy_to(const PlaceType &target_place) const {
299
  LOG(WARNING) << "The Tensor's `copy_to` method is deprecated since version "
300
                  "2.3, and will be removed in version 2.4, please use "
301
                  "`copy_to` method without template argument instead. "
302 303
                  "reason: copying a Tensor to another device does not need "
                  "to specify the data type template argument.";
304
  return copy_to(ConvertExtPlaceToBackend(target_place), /*blocking=*/false);
305 306
}

307
template PADDLE_API Tensor
308
Tensor::copy_to<float>(const PlaceType &target_place) const;
309
template PADDLE_API Tensor
310
Tensor::copy_to<double>(const PlaceType &target_place) const;
311
template PADDLE_API Tensor
312
Tensor::copy_to<int64_t>(const PlaceType &target_place) const;
313
template PADDLE_API Tensor
314
Tensor::copy_to<int32_t>(const PlaceType &target_place) const;
315
template PADDLE_API Tensor
316
Tensor::copy_to<uint8_t>(const PlaceType &target_place) const;
317
template PADDLE_API Tensor
318
Tensor::copy_to<int8_t>(const PlaceType &target_place) const;
319
template PADDLE_API Tensor
320
Tensor::copy_to<int16_t>(const PlaceType &target_place) const;
321
template PADDLE_API Tensor
322
Tensor::copy_to<bool>(const PlaceType &target_place) const;
323
template PADDLE_API Tensor Tensor::copy_to<paddle::platform::complex<float>>(
324
    const PlaceType &target_place) const;
325
template PADDLE_API Tensor Tensor::copy_to<paddle::platform::complex<double>>(
326
    const PlaceType &target_place) const;
327
template PADDLE_API Tensor
328 329
Tensor::copy_to<paddle::platform::float16>(const PlaceType &target_place) const;

330 331
Tensor Tensor::copy_to(Backend backend, bool blocking) const {
  return experimental::copy_to(*this, backend, blocking);
332 333
}

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
void Tensor::copy_(const Tensor &src, bool blocking) {
  if (!src.is_initialized()) {
    return;
  }
  VLOG(3) << "Deep copy Tensor from " << src.name() << " to " << name();
  if (defined()) {
    PADDLE_ENFORCE_EQ(dtype(),
                      src.dtype(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s, "
                          "Tensor Copy cannot be performed!",
                          name(),
                          src.name()));
    PADDLE_ENFORCE_EQ(impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "Copy cannot be performed!",
                          name(),
                          src.name()));
  }
  auto copy_tensor =
      src.copy_to(pten::TransToPtenBackend(src.inner_place()), blocking);
  set_impl(copy_tensor.impl());
}
359 360
Tensor Tensor::cast(DataType target_type) const {
  return experimental::cast(*this, target_type);
361 362 363 364 365 366
}

/* Part 6: Status utils methods */

bool Tensor::defined() const { return impl_ != nullptr; }

367
bool Tensor::initialized() const { return defined() && impl_->initialized(); }
368 369

bool Tensor::is_initialized() const {
370
  return defined() && impl_->initialized();
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
}

void Tensor::reset() { impl_.reset(); }

/* Part 7: Operator overloading */

Tensor &Tensor::operator=(const Tensor &x) & {
  impl_ = x.impl_;
  autograd_meta_ = x.autograd_meta_;
  return *this;
}

Tensor &Tensor::operator=(Tensor &&x) & {
  impl_ = std::move(x.impl_);
  autograd_meta_ = std::move(x.autograd_meta_);
  return *this;
}

AbstractAutogradMeta *Tensor::get_autograd_meta() const {
  return autograd_meta_.get();
}

void Tensor::set_autograd_meta(
    std::shared_ptr<AbstractAutogradMeta> autograd_meta) {
  autograd_meta_ = std::move(autograd_meta);
}

}  // namespace experimental
}  // namespace paddle