print_op.cc 9.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yan Chunwei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include <algorithm>
#include <ctime>

Y
Yi Wang 已提交
18
#include "paddle/fluid/framework/op_registry.h"
S
sneaxiy 已提交
19
#include "paddle/fluid/framework/var_type.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/variable.h"
Y
Yan Chunwei 已提交
21 22 23 24 25 26

namespace paddle {
namespace operators {

#define CLOG std::cout

27 28 29
const char kForward[] = "FORWARD";
const char kBackward[] = "BACKWARD";
const char kBoth[] = "BOTH";
Y
yangyaming 已提交
30

Y
Yan Chunwei 已提交
31 32 33 34
struct Formater {
  std::string message;
  std::string name;
  std::vector<int> dims;
35
  std::type_index dtype{typeid(const char)};
Y
Yan Chunwei 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49
  framework::LoD lod;
  int summarize;
  void* data{nullptr};

  void operator()(size_t size) {
    PrintMessage();
    PrintName();
    PrintDims();
    PrintDtype();
    PrintLod();
    PrintData(size);
  }

 private:
50
  void PrintMessage() { CLOG << std::time(nullptr) << "\t" << message << "\t"; }
Y
Yan Chunwei 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
  void PrintName() {
    if (!name.empty()) {
      CLOG << "Tensor[" << name << "]" << std::endl;
    }
  }
  void PrintDims() {
    if (!dims.empty()) {
      CLOG << "\tshape: [";
      for (auto i : dims) {
        CLOG << i << ",";
      }
      CLOG << "]" << std::endl;
    }
  }
  void PrintDtype() {
S
sneaxiy 已提交
66
    if (!framework::IsType<const char>(dtype)) {
Y
Yan Chunwei 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
      CLOG << "\tdtype: " << dtype.name() << std::endl;
    }
  }
  void PrintLod() {
    if (!lod.empty()) {
      CLOG << "\tLoD: [";
      for (auto level : lod) {
        CLOG << "[ ";
        for (auto i : level) {
          CLOG << i << ",";
        }
        CLOG << " ]";
      }
      CLOG << "]" << std::endl;
    }
  }

  void PrintData(size_t size) {
    PADDLE_ENFORCE_NOT_NULL(data);
    // print float
S
sneaxiy 已提交
87
    if (framework::IsType<const float>(dtype)) {
Y
Yan Chunwei 已提交
88
      Display<float>(size);
S
sneaxiy 已提交
89
    } else if (framework::IsType<const double>(dtype)) {
Y
Yan Chunwei 已提交
90
      Display<double>(size);
S
sneaxiy 已提交
91
    } else if (framework::IsType<const int>(dtype)) {
Y
Yan Chunwei 已提交
92
      Display<int>(size);
S
sneaxiy 已提交
93
    } else if (framework::IsType<const int64_t>(dtype)) {
Y
Yan Chunwei 已提交
94
      Display<int64_t>(size);
S
sneaxiy 已提交
95
    } else if (framework::IsType<const bool>(dtype)) {
96 97 98
      Display<bool>(size);
    } else {
      CLOG << "\tdata: unprintable type: " << dtype.name() << std::endl;
Y
Yan Chunwei 已提交
99 100 101 102 103
    }
  }

  template <typename T>
  void Display(size_t size) {
104
    auto* d = reinterpret_cast<T*>(data);
Y
Yan Chunwei 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    CLOG << "\tdata: ";
    if (summarize != -1) {
      summarize = std::min(size, (size_t)summarize);
      for (int i = 0; i < summarize; i++) {
        CLOG << d[i] << ",";
      }
    } else {
      for (size_t i = 0; i < size; i++) {
        CLOG << d[i] << ",";
      }
    }
    CLOG << std::endl;
  }
};

// TODO(ChunweiYan) there should be some other printers for TensorArray
class TensorPrintOp : public framework::OperatorBase {
 public:
  TensorPrintOp(const std::string& type,
                const framework::VariableNameMap& inputs,
                const framework::VariableNameMap& outputs,
                const framework::AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

  TensorPrintOp(const TensorPrintOp& o)
      : framework::OperatorBase(
            static_cast<const framework::OperatorBase&>(o)) {
Y
yangyaming 已提交
132
    PADDLE_THROW("Not implemented.");
Y
Yan Chunwei 已提交
133 134
  }

135 136 137
 private:
  void RunImpl(const framework::Scope& scope,
               const platform::Place& place) const override {
Y
yangyaming 已提交
138
    const framework::Variable* in_var_ptr = nullptr;
139
    std::string phase(kForward);
Y
yangyaming 已提交
140 141 142 143 144 145 146 147 148 149
    std::string printed_var_name = "";

    auto& inputs = Inputs();
    if (inputs.find("In") != inputs.end() && !Inputs("In").empty()) {
      in_var_ptr = scope.FindVar(Input("In"));
      printed_var_name = Inputs("In").front();
    } else if (inputs.find("In@GRAD") != inputs.end() &&
               !Inputs("In@GRAD").empty()) {
      in_var_ptr = scope.FindVar(Input("In@GRAD"));
      printed_var_name = Inputs("In@GRAD").front();
150
      phase = std::string(kBackward);
Y
yangyaming 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    } else {
      PADDLE_THROW("Unknown phase, should be forward or backward.");
    }

    PADDLE_ENFORCE_NOT_NULL(in_var_ptr);

    auto& in_tensor = in_var_ptr->Get<framework::LoDTensor>();
    auto* out_var_ptr = scope.FindVar(Output("Out"));
    auto& out_tensor = *out_var_ptr->GetMutable<framework::LoDTensor>();

    // Just copy data from input tensor to output tensor
    // output tensor share same memory with input tensor
    out_tensor.ShareDataWith(in_tensor);
    out_tensor.set_lod(in_tensor.lod());

    std::string print_phase = Attr<std::string>("print_phase");
167
    if (print_phase != phase && print_phase != std::string(kBoth)) {
Y
yangyaming 已提交
168 169 170
      return;
    }

Y
Yan Chunwei 已提交
171 172 173
    int first_n = Attr<int>("first_n");
    if (first_n > 0 && ++times_ > first_n) return;

Y
yangyaming 已提交
174 175 176
    framework::LoDTensor printed_tensor;
    printed_tensor.set_lod(in_tensor.lod());
    printed_tensor.Resize(in_tensor.dims());
Y
Yan Chunwei 已提交
177

Y
yangyaming 已提交
178 179 180 181 182
    if (platform::is_cpu_place(in_tensor.place())) {
      printed_tensor.ShareDataWith(in_tensor);
    } else {
      // copy data to cpu to print
      platform::CPUPlace place;
Y
Yi Wang 已提交
183
      framework::TensorCopy(in_tensor, place, &printed_tensor);
Y
yangyaming 已提交
184
    }
Y
Yan Chunwei 已提交
185 186

    Formater formater;
187
    formater.message = Attr<std::string>("message");
Y
Yan Chunwei 已提交
188
    if (Attr<bool>("print_tensor_name")) {
Y
yangyaming 已提交
189
      formater.name = printed_var_name;
Y
Yan Chunwei 已提交
190 191
    }
    if (Attr<bool>("print_tensor_type")) {
Y
yangyaming 已提交
192
      formater.dtype = printed_tensor.type();
Y
Yan Chunwei 已提交
193 194
    }
    if (Attr<bool>("print_tensor_shape")) {
Y
yangyaming 已提交
195 196 197
      auto& dims = printed_tensor.dims();
      formater.dims.resize(dims.size());
      for (int i = 0; i < dims.size(); ++i) formater.dims[i] = dims[i];
Y
Yan Chunwei 已提交
198 199
    }
    if (Attr<bool>("print_tensor_lod")) {
Y
yangyaming 已提交
200
      formater.lod = printed_tensor.lod();
Y
Yan Chunwei 已提交
201 202
    }
    formater.summarize = Attr<int>("summarize");
203
    formater.data = reinterpret_cast<void*>(printed_tensor.data<void>());
Y
yangyaming 已提交
204
    formater(printed_tensor.numel());
Y
Yan Chunwei 已提交
205 206 207 208 209 210 211 212
  }

 private:
  mutable int times_{0};
};

class PrintOpProtoAndCheckMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
213
  void Make() override {
Y
yangyaming 已提交
214
    AddInput("In", "Input tensor to be displayed.");
Y
Yan Chunwei 已提交
215 216
    AddAttr<int>("first_n", "Only log `first_n` number of times.");
    AddAttr<std::string>("message", "A string message to print as a prefix.");
Y
yangyaming 已提交
217
    AddAttr<int>("summarize", "Number of elements printed.");
Y
Yan Chunwei 已提交
218 219 220 221
    AddAttr<bool>("print_tensor_name", "Whether to print the tensor name.");
    AddAttr<bool>("print_tensor_type", "Whether to print the tensor's dtype.");
    AddAttr<bool>("print_tensor_shape", "Whether to print the tensor's shape.");
    AddAttr<bool>("print_tensor_lod", "Whether to print the tensor's lod.");
Y
yangyaming 已提交
222 223 224 225
    AddAttr<std::string>(
        "print_phase",
        "(string, default 'BOTH') Which phase to display including 'FORWARD' "
        "'BACKWARD' and 'BOTH'.")
226 227 228
        .SetDefault(std::string(kBoth))
        .InEnum({std::string(kForward), std::string(kBackward),
                 std::string(kBoth)});
Y
yangyaming 已提交
229
    AddOutput("Out", "Output tensor with same data as input tensor.");
Y
Yan Chunwei 已提交
230
    AddComment(R"DOC(
Y
yangyaming 已提交
231
Creates a print op that will print when a tensor is accessed.
Y
Yan Chunwei 已提交
232

Y
yangyaming 已提交
233 234 235
Wraps the tensor passed in so that whenever that a tensor is accessed,
the message `message` is printed, along with the current value of the
tensor `t`.)DOC");
Y
Yan Chunwei 已提交
236 237 238
  }
};

Y
yangyaming 已提交
239
class InferShapeForward : public framework::InferShapeBase {
Y
Yan Chunwei 已提交
240 241
 public:
  void operator()(framework::InferShapeContext* context) const override {
Y
yangyaming 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254
    PADDLE_ENFORCE(context->HasInput("In"), "Input(In) should not be null.");
    context->ShareLoD("In", /*->*/ "Out");
    context->SetOutputDim("Out", context->GetInputDim("In"));
  }
};

class InferShapeBackward : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext* context) const override {
    PADDLE_ENFORCE(context->HasInput("In@GRAD"),
                   "Input(In@GRAD) should not be null.");
    context->ShareLoD("In@GRAD", /*->*/ "Out");
    context->SetOutputDim("Out", context->GetInputDim("In@GRAD"));
Y
Yan Chunwei 已提交
255 256 257 258 259 260 261 262 263
  }
};

class InferVarType : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {}
};

Y
yangyaming 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
class PrintOpProtoAndCheckGradOpMaker
    : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op_desc_ptr = new framework::OpDesc();
    op_desc_ptr->SetType("print_grad");
    op_desc_ptr->SetInput("In@GRAD", OutputGrad("Out"));
    op_desc_ptr->SetOutput("Out", InputGrad("In"));
    op_desc_ptr->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(op_desc_ptr);
  }
};

Y
Yan Chunwei 已提交
279 280 281
}  // namespace operators
}  // namespace paddle

Y
yangyaming 已提交
282 283 284 285 286 287
namespace ops = paddle::operators;

REGISTER_OPERATOR(print, ops::TensorPrintOp, ops::PrintOpProtoAndCheckMaker,
                  ops::PrintOpProtoAndCheckGradOpMaker, ops::InferShapeForward,
                  ops::InferVarType);
REGISTER_OPERATOR(print_grad, ops::TensorPrintOp, ops::InferShapeBackward);