graph_send_recv_op.cu 16.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <thrust/device_vector.h>
#include <thrust/fill.h>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/graph_send_recv_op.h"
21
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T, typename IndexT>
struct GraphSendRecvSumCUDAFunctor {
  DEVICE inline void operator()(const T* params, T* output, const IndexT& in_i,
                                const IndexT& out_i) {
    paddle::platform::CudaAtomicAdd(output + out_i, *(params + in_i));
  }
};

template <typename T, typename IndexT>
struct GraphSendRecvMaxCUDAFunctor {
  DEVICE inline void operator()(const T* params, T* output, const IndexT& in_i,
                                const IndexT& out_i) {
    paddle::platform::CudaAtomicMax(output + out_i, *(params + in_i));
  }
};

template <typename T, typename IndexT>
struct GraphSendRecvMinCUDAFunctor {
  DEVICE inline void operator()(const T* params, T* output, const IndexT& in_i,
                                const IndexT& out_i) {
    paddle::platform::CudaAtomicMin(output + out_i, *(params + in_i));
  }
};

template <typename T, typename IndexT, typename Functor>
__global__ void GraphSendRecvCUDAKernel(const T* params,
                                        const IndexT* src_indices,
                                        const IndexT* dst_indices, T* output,
                                        size_t index_size, size_t slice_size,
                                        Functor functor) {
  CUDA_KERNEL_LOOP_TYPE(i, index_size * slice_size, int64_t) {
    int64_t indices_i = i / slice_size;
    int64_t slice_i = i - indices_i * slice_size;
    IndexT src_i = src_indices[indices_i];
    IndexT dst_i = dst_indices[indices_i];
    int64_t in_i = src_i * slice_size + slice_i;
    int64_t out_i = dst_i * slice_size + slice_i;
    functor(params, output, in_i, out_i);
  }
}

// For max
template <typename T>
__global__ void InputResetMaxCUDAKernel(T* output, size_t input_size,
                                        size_t slice_size) {
  CUDA_KERNEL_LOOP_TYPE(i, input_size * slice_size, int64_t) {
    if (*(output + i) == std::numeric_limits<T>::min()) {
      *(output + i) = 0;
    }
  }
}

// For min
template <typename T>
__global__ void InputResetMinCUDAKernel(T* output, size_t input_size,
                                        size_t slice_size) {
  CUDA_KERNEL_LOOP_TYPE(i, input_size * slice_size, int64_t) {
    if (*(output + i) == std::numeric_limits<T>::max()) {
      *(output + i) = 0;
    }
  }
}

// Get dst_count
template <typename T, typename IndexT>
__global__ void ComputeCountCUDAKernel(int* count, const IndexT* dst_indices,
                                       size_t index_size) {
  CUDA_KERNEL_LOOP_TYPE(i, index_size, int64_t) {
    IndexT dst_i = dst_indices[i];
    paddle::platform::CudaAtomicAdd(count + dst_i, 1);
  }
}

// For forward mean
template <typename T>
__global__ void ManipulateMeanCUDAKernel(T* output, int* count,
                                         size_t input_size, size_t slice_size) {
  CUDA_KERNEL_LOOP_TYPE(i, input_size * slice_size, int64_t) {
    int64_t c_index = i / slice_size;
    if (*(count + c_index) > 1) {
      *(output + i) = *(output + i) / *(count + c_index);
    }
  }
}

// For backward mean
template <typename T, typename IndexT>
__global__ void ManipulateMeanGradCUDAKernel(
    const T* params, const IndexT* src_indices, const IndexT* dst_indices,
    T* output, size_t index_size, size_t slice_size, const int* dst_count) {
  CUDA_KERNEL_LOOP_TYPE(i, index_size * slice_size, int64_t) {
    int64_t indices_i = i / slice_size;
    int64_t slice_i = i - indices_i * slice_size;
    IndexT src_i = src_indices[indices_i];
    IndexT dst_i = dst_indices[indices_i];
    int64_t in_i = src_i * slice_size + slice_i;
    int64_t out_i = dst_i * slice_size + slice_i;
    paddle::platform::CudaAtomicAdd(output + out_i,
                                    *(params + in_i) / dst_count[src_i]);
  }
}

// For backward min and max
template <typename T, typename IndexT>
__global__ void ManipulateMinMaxGradCUDAKernel(
    const T* params, const IndexT* src_indices, const IndexT* dst_indices,
    T* output, size_t index_size, size_t slice_size, const T* ptr_input,
    const T* ptr_output) {
  CUDA_KERNEL_LOOP_TYPE(i, index_size * slice_size, int64_t) {
    int64_t indices_i = i / slice_size;
    int64_t slice_i = i - indices_i * slice_size;
    IndexT src_i = src_indices[indices_i];
    IndexT dst_i = dst_indices[indices_i];
    int64_t in_i = src_i * slice_size + slice_i;
    int64_t out_i = dst_i * slice_size + slice_i;
    paddle::platform::CudaAtomicAdd(
        output + out_i,
        *(params + in_i) * (*(ptr_input + out_i) == *(ptr_output + in_i)));
  }
}

template <typename DeviceContext, typename T, typename IndexT>
void GraphSendRecvOpCUDAKernelLaunchHelper(
    const framework::ExecutionContext& ctx, const Tensor& src_index,
    const Tensor& dst_index) {
  auto* X = ctx.Input<Tensor>("X");
  auto* Y = ctx.Output<Tensor>("Out");
  std::string pool_type = ctx.Attr<std::string>("pool_type");

  const int& index_size = src_index.dims()[0];

  T* p_output = Y->mutable_data<T>(ctx.GetPlace());
  const auto& src_dims = X->dims();
  int64_t memset_size = 1;
  for (int i = 0; i < src_dims.size(); ++i) {
    memset_size *= src_dims[i];
  }
  const size_t& memset_bytes = memset_size * sizeof(T);
  if (pool_type == "SUM" || pool_type == "MEAN") {
#ifdef PADDLE_WITH_HIP
    hipMemset(p_output, 0, memset_bytes);
#else
    cudaMemset(p_output, 0, memset_bytes);
#endif
  } else if (pool_type == "MAX") {
    thrust::device_ptr<T> p_output_ptr(p_output);
    thrust::fill(thrust::device, p_output_ptr, p_output_ptr + memset_size,
                 std::numeric_limits<T>::min());
  } else if (pool_type == "MIN") {
    thrust::device_ptr<T> p_output_ptr(p_output);
    thrust::fill(thrust::device, p_output_ptr, p_output_ptr + memset_size,
                 std::numeric_limits<T>::max());
  }

  if (index_size == 0) return;

  int64_t slice_size = 1;
  for (int i = 1; i < src_dims.size(); ++i) {
    slice_size *= src_dims[i];
  }
  const T* p_src = X->data<T>();
  const IndexT* s_index = src_index.data<IndexT>();
  const IndexT* d_index = dst_index.data<IndexT>();

#ifdef PADDLE_WITH_HIP
  int block = 256;
#else
  int block = 1024;
#endif
  int64_t n = slice_size * index_size;
  const auto& dev_ctx = ctx.cuda_device_context();
  int64_t max_grid_dimx = dev_ctx.GetCUDAMaxGridDimSize().x;
  int64_t grid_tmp = (n + block - 1) / block;
  int64_t grid = grid_tmp < max_grid_dimx ? grid_tmp : max_grid_dimx;
  int64_t input_size = src_dims[0];
  if (pool_type == "SUM") {
    GraphSendRecvSumCUDAFunctor<T, IndexT> functor;
    GraphSendRecvCUDAKernel<T, IndexT,
                            GraphSendRecvSumCUDAFunctor<T, IndexT>><<<
        grid, block, 0, reinterpret_cast<const platform::CUDADeviceContext&>(
                            ctx.device_context())
                            .stream()>>>(p_src, s_index, d_index, p_output,
                                         index_size, slice_size, functor);
  } else if (pool_type == "MAX") {
    GraphSendRecvMaxCUDAFunctor<T, IndexT> functor;
    GraphSendRecvCUDAKernel<T, IndexT,
                            GraphSendRecvMaxCUDAFunctor<T, IndexT>><<<
        grid, block, 0, reinterpret_cast<const platform::CUDADeviceContext&>(
                            ctx.device_context())
                            .stream()>>>(p_src, s_index, d_index, p_output,
                                         index_size, slice_size, functor);

    int64_t grid_max_tmp = (input_size * slice_size + block - 1) / block;
    int64_t grid_max =
        grid_max_tmp < max_grid_dimx ? grid_max_tmp : max_grid_dimx;
    InputResetMaxCUDAKernel<
        T><<<grid_max, block, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(
                 ctx.device_context())
                 .stream()>>>(p_output, input_size, slice_size);
  } else if (pool_type == "MIN") {
    GraphSendRecvMinCUDAFunctor<T, IndexT> functor;
    GraphSendRecvCUDAKernel<T, IndexT,
                            GraphSendRecvMinCUDAFunctor<T, IndexT>><<<
        grid, block, 0, reinterpret_cast<const platform::CUDADeviceContext&>(
                            ctx.device_context())
                            .stream()>>>(p_src, s_index, d_index, p_output,
                                         index_size, slice_size, functor);

    int64_t grid_min_tmp = (input_size * slice_size + block - 1) / block;
    int64_t grid_min =
        grid_min_tmp < max_grid_dimx ? grid_min_tmp : max_grid_dimx;
    InputResetMinCUDAKernel<
        T><<<grid_min, block, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(
                 ctx.device_context())
                 .stream()>>>(p_output, input_size, slice_size);
  } else if (pool_type == "MEAN") {
    GraphSendRecvSumCUDAFunctor<T, IndexT> functor;
    GraphSendRecvCUDAKernel<T, IndexT,
                            GraphSendRecvSumCUDAFunctor<T, IndexT>><<<
        grid, block, 0, reinterpret_cast<const platform::CUDADeviceContext&>(
                            ctx.device_context())
                            .stream()>>>(p_src, s_index, d_index, p_output,
                                         index_size, slice_size, functor);

    auto* dst_count = ctx.Output<Tensor>("Dst_count");
    int* p_dst_count = dst_count->mutable_data<int>(ctx.GetPlace());

#ifdef PADDLE_WITH_HIP
    hipMemset(p_dst_count, 0, input_size * sizeof(int));
#else
    cudaMemset(p_dst_count, 0, input_size * sizeof(int));
#endif

    int64_t grid_count = (index_size + block - 1) / block;
    ComputeCountCUDAKernel<
        T, IndexT><<<grid_count, block, 0,
                     reinterpret_cast<const platform::CUDADeviceContext&>(
                         ctx.device_context())
                         .stream()>>>(p_dst_count, d_index, index_size);

    int64_t grid_mean_tmp = (input_size * slice_size + block - 1) / block;
    int64_t grid_mean =
        grid_mean_tmp < max_grid_dimx ? grid_mean_tmp : max_grid_dimx;
    ManipulateMeanCUDAKernel<
        T><<<grid_mean, block, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(
                 ctx.device_context())
                 .stream()>>>(p_output, p_dst_count, input_size, slice_size);
  }
}

template <typename DeviceContext, typename T, typename IndexT>
void GraphSendRecvGradOpCUDAKernelLaunchHelper(
    const framework::ExecutionContext& ctx, const Tensor& src_index,
    const Tensor& dst_index) {
  auto* X = ctx.Input<Tensor>(framework::GradVarName("Out"));
  auto* Y = ctx.Output<Tensor>(framework::GradVarName("X"));
  std::string pool_type = ctx.Attr<std::string>("pool_type");

  const int& index_size = src_index.dims()[0];

  T* p_output = Y->mutable_data<T>(ctx.GetPlace());
  const auto& src_dims = X->dims();
  int64_t memset_size = 1;
  for (int i = 0; i < src_dims.size(); ++i) {
    memset_size *= src_dims[i];
  }
  const size_t& memset_bytes = memset_size * sizeof(T);

#ifdef PADDLE_WITH_HIP
  hipMemset(p_output, 0, memset_bytes);
#else
  cudaMemset(p_output, 0, memset_bytes);
#endif

  if (index_size == 0) return;

  int64_t slice_size = 1;
  for (int i = 1; i < src_dims.size(); ++i) {
    slice_size *= src_dims[i];
  }
  const T* p_src = X->data<T>();
  const IndexT* s_index = src_index.data<IndexT>();
  const IndexT* d_index = dst_index.data<IndexT>();

#ifdef PADDLE_WITH_HIP
  int block = 256;
#else
  int block = 1024;
#endif
  int64_t n = slice_size * index_size;
  const auto& dev_ctx = ctx.cuda_device_context();
  int64_t max_grid_dimx = dev_ctx.GetCUDAMaxGridDimSize().x;
  int64_t grid_tmp = (n + block - 1) / block;
  int64_t grid = grid_tmp < max_grid_dimx ? grid_tmp : max_grid_dimx;
  int64_t input_size = src_dims[0];
  if (pool_type == "SUM") {
    GraphSendRecvSumCUDAFunctor<T, IndexT> functor;
    GraphSendRecvCUDAKernel<T, IndexT,
                            GraphSendRecvSumCUDAFunctor<T, IndexT>><<<
        grid, block, 0, reinterpret_cast<const platform::CUDADeviceContext&>(
                            ctx.device_context())
                            .stream()>>>(p_src, s_index, d_index, p_output,
                                         index_size, slice_size, functor);
  } else if (pool_type == "MEAN") {
    auto* dst_count = ctx.Input<Tensor>("Dst_count");
    const int* s_count = dst_count->data<int>();
    ManipulateMeanGradCUDAKernel<T, IndexT><<<
        grid, block, 0, reinterpret_cast<const platform::CUDADeviceContext&>(
                            ctx.device_context())
                            .stream()>>>(p_src, s_index, d_index, p_output,
                                         index_size, slice_size, s_count);
  } else if (pool_type == "MAX" || pool_type == "MIN") {
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Input<Tensor>("Out");
    const T* ptr_input = input->data<T>();
    const T* ptr_output = output->data<T>();
    ManipulateMinMaxGradCUDAKernel<T, IndexT><<<
        grid, block, 0, reinterpret_cast<const platform::CUDADeviceContext&>(
                            ctx.device_context())
                            .stream()>>>(p_src, s_index, d_index, p_output,
                                         index_size, slice_size, ptr_input,
                                         ptr_output);
  }
}

template <typename DeviceContext, typename T>
class GraphSendRecvOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* src_index = ctx.Input<Tensor>("Src_index");
    auto* dst_index = ctx.Input<Tensor>("Dst_index");
    auto index_type = src_index->type();

    if (index_type == framework::proto::VarType::INT32) {
      GraphSendRecvOpCUDAKernelLaunchHelper<DeviceContext, T, int>(
          ctx, *src_index, *dst_index);
    } else if (index_type == framework::proto::VarType::INT64) {
      GraphSendRecvOpCUDAKernelLaunchHelper<DeviceContext, T, int64_t>(
          ctx, *src_index, *dst_index);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported Src_index or Dst_index dtype, expected int, int64, but "
          "got %s.",
          index_type));
    }
  }
};

template <typename DeviceContext, typename T>
class GraphSendRecvGradOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* src_index = ctx.Input<Tensor>("Dst_index");
    auto* dst_index = ctx.Input<Tensor>("Src_index");
    auto index_type = src_index->type();

    if (index_type == framework::proto::VarType::INT32) {
      GraphSendRecvGradOpCUDAKernelLaunchHelper<DeviceContext, T, int>(
          ctx, *src_index, *dst_index);
    } else if (index_type == framework::proto::VarType::INT64) {
      GraphSendRecvGradOpCUDAKernelLaunchHelper<DeviceContext, T, int64_t>(
          ctx, *src_index, *dst_index);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported Src_index or Dst_index dtype, expected int, int64, but "
          "got %s.",
          index_type));
    }
  }
};

}  // namespace operators
}  // namespace paddle

using CUDA = paddle::platform::CUDADeviceContext;
namespace ops = paddle::operators;

REGISTER_OP_CUDA_KERNEL(graph_send_recv,
                        ops::GraphSendRecvOpCUDAKernel<CUDA, float>,
                        ops::GraphSendRecvOpCUDAKernel<CUDA, double>,
                        ops::GraphSendRecvOpCUDAKernel<CUDA, int>,
                        ops::GraphSendRecvOpCUDAKernel<CUDA, int64_t>);

REGISTER_OP_CUDA_KERNEL(graph_send_recv_grad,
                        ops::GraphSendRecvGradOpCUDAKernel<CUDA, float>,
                        ops::GraphSendRecvGradOpCUDAKernel<CUDA, double>,
                        ops::GraphSendRecvGradOpCUDAKernel<CUDA, int>,
                        ops::GraphSendRecvGradOpCUDAKernel<CUDA, int64_t>);