README.md 24.9 KB
Newer Older
Y
Yi Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
# PaddlePaddle on AWS with Kubernetes

## Create AWS Account and IAM Account

To use AWS, we need to sign up an AWS account on Amazon's Web site.
An AWS account allows us to login to the AWS Console Web interface to
create IAM users and user groups.  Usually, we create a user group with
privileges required to run PaddlePaddle, and we create users for
those who are going to run PaddlePaddle and add these users into the
group.  IAM users can identify themselves using password and tokens,
where passwords allows users to log in to the AWS Console, and tokens
make it easy for users to submit and inspect jobs from the command
line.

To sign up an AWS account, please
follow
[this guide](http://docs.aws.amazon.com/lambda/latest/dg/setting-up.html).
To create users and user groups under an AWS account, please
follow
[this guide](http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html).

Please be aware that this tutorial needs the following privileges in
the user group:

- AmazonEC2FullAccess
- AmazonS3FullAccess
- AmazonRoute53FullAccess
- AmazonRoute53DomainsFullAccess
- AmazonElasticFileSystemFullAccess
- AmazonVPCFullAccess
- IAMUserSSHKeys
- IAMFullAccess
- NetworkAdministrator


By the time we write this tutorial, we noticed that Chinese AWS users
might suffer from authentication problems when running this tutorial.
Our solution is that we create a VM instance with the default Amazon
AMI and in the same zone as our cluster runs, so we can SSH to this VM
instance as a tunneling server and control our cluster and jobs from
it.


## PaddlePaddle on AWS
45

Z
zhouti 已提交
46
Here we will show you step by step on how to run PaddlePaddle training on AWS cluster.
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

###Download kube-aws and kubectl

####kube-aws

Import the CoreOS Application Signing Public Key:

```
gpg2 --keyserver pgp.mit.edu --recv-key FC8A365E
```

Validate the key fingerprint:

```
gpg2 --fingerprint FC8A365E
```
The correct key fingerprint is `18AD 5014 C99E F7E3 BA5F 6CE9 50BD D3E0 FC8A 365E`

Go to the [releases](https://github.com/coreos/kube-aws/releases) and download the latest release tarball and detached signature (.sig) for your architecture.

Validate the tarball's GPG signature:

```
PLATFORM=linux-amd64
 # Or
PLATFORM=darwin-amd64

gpg2 --verify kube-aws-${PLATFORM}.tar.gz.sig kube-aws-${PLATFORM}.tar.gz
```

Extract the binary:

```
tar zxvf kube-aws-${PLATFORM}.tar.gz
```

Add kube-aws to your path:

```
mv ${PLATFORM}/kube-aws /usr/local/bin
```


####kubectl

Go to the [releases](https://github.com/kubernetes/kubernetes/releases) and download the latest release tarball.

Extract the tarball and then concate the kubernetes binaries directory into PATH:

```
export PATH=<path/to/kubernetes-directory>/platforms/linux/amd64:$PATH

```

User credentials and security tokens will be generated later in user directory, not in `~/.kube/config`, they will be necessary to use the CLI or the HTTP Basic Auth.


###Configure AWS Credentials
106

Z
zhouti 已提交
107 108 109 110
First check out [this](http://docs.aws.amazon.com/cli/latest/userguide/installing.html) for installing the AWS command line interface, if you use ec2 instance with default amazon AMI, the cli tool has already been installed on your machine.


And then configure your AWS account information:
111 112 113 114 115

```
aws configure

```
Z
zhouti 已提交
116 117


118
Fill in the required fields (You can get your AWS aceess key id and AWS secrete access key by following [this](http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html) instruction):
Z
zhouti 已提交
119

120 121 122 123 124 125 126 127 128

```
AWS Access Key ID: YOUR_ACCESS_KEY_ID
AWS Secrete Access Key: YOUR_SECRETE_ACCESS_KEY
Default region name: us-west-2
Default output format: json

```

129
Test that your credentials work by describing any instances you may already have running on your account:
Z
zhouti 已提交
130

131 132 133 134 135 136 137 138 139 140 141 142 143
```
aws ec2 describe-instances
```

###Define Cluster Parameters

####EC2 key pair

The keypair that will authenticate SSH access to your EC2 instances. The public half of this key pair will be configured on each CoreOS node.

After creating a key pair, you will use the name you gave the keys to configure the cluster. Key pairs are only available to EC2 instances in the same region. More info in the [EC2 Keypair docs](http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html).

####KMS key
Z
zhouti 已提交
144

145
Amazon KMS keys are used to encrypt and decrypt cluster TLS assets. If you already have a KMS Key that you would like to use, you can skip creating a new key and provide the Arn string for your existing key.
146

147
You can create a KMS key in the AWS console, or with the aws command line tool:
148

149
```
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
$ aws kms --region=us-west-2 create-key --description="kube-aws assets"
{
    "KeyMetadata": {
        "CreationDate": 1458235139.724,
        "KeyState": "Enabled",
        "Arn": "arn:aws:kms:us-west-2:xxxxxxxxx:key/xxxxxxxxxxxxxxxxxxx",
        "AWSAccountId": "xxxxxxxxxxxxx",
        "Enabled": true,
        "KeyUsage": "ENCRYPT_DECRYPT",
        "KeyId": "xxxxxxxxx",
        "Description": "kube-aws assets"
    }
}
```

You will use the `KeyMetadata.Arn` string to identify your KMS key in the init step.
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
And then you need to add several inline policies in your user permission.

kms inline policy:

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "Stmt1482205552000",
            "Effect": "Allow",
            "Action": [
                "kms:Decrypt",
                "kms:Encrypt"
            ],
            "Resource": [
                "arn:aws:kms:*:xxxxxxxxx:key/*"
            ]
        }
    ]
}
188
```
189
cloudformation inline policy:
190

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
```
"Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "Stmt1482205746000",
            "Effect": "Allow",
            "Action": [
                "cloudformation:CreateStack",
                "cloudformation:UpdateStack",
                "cloudformation:DeleteStack",
                "cloudformation:DescribeStacks",
                "cloudformation:DescribeStackResource",
                "cloudformation:GetTemplate"
            ],
            "Resource": [
                "arn:aws:cloudformation:us-west-2:xxxxxxxxx:stack/YOUR_CLUSTER_NAME/*"
            ]
        }
    ]
}
```


####External DNS name

When the cluster is created, the controller will expose the TLS-secured API on a public IP address. You will need to create an A record for the external DNS hostname you want to point to this IP address. You can find the API external IP address after the cluster is created by invoking kube-aws status.

####S3 bucket

You need to create an S3 bucket before startup the Kubernetes cluster.
221

222
####Initialize an asset directory
Z
zhouti 已提交
223

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
Create a directory on your local machine to hold the generated assets:

```
$ mkdir my-cluster
$ cd my-cluster
```

Initialize the cluster CloudFormation stack with the KMS Arn, key pair name, and DNS name from the previous step:

```
$ kube-aws init \
--cluster-name=my-cluster-name \
--external-dns-name=my-cluster-endpoint \
--region=us-west-1 \
--availability-zone=us-west-1c \
--key-name=key-pair-name \
--kms-key-arn="arn:aws:kms:us-west-2:xxxxxxxxxx:key/xxxxxxxxxxxxxxxxxxx"
```

There will now be a cluster.yaml file in the asset directory. This is the main configuration file for your cluster.

####Render contents of the asset directory

In the simplest case, you can have kube-aws generate both your TLS identities and certificate authority for you.

```
$ kube-aws render credentials --generate-ca
```

The next command generates the default set of cluster assets in your asset directory.

```
sh $ kube-aws render stack
```

Here's what the directory structure looks like:

```
$ tree
.
├── cluster.yaml
├── credentials
│   ├── admin-key.pem
│   ├── admin.pem
│   ├── apiserver-key.pem
│   ├── apiserver.pem
│   ├── ca-key.pem
│   ├── ca.pem
│   ├── worker-key.pem
│   └── worker.pem
│   ├── etcd-key.pem
│   └── etcd.pem
│   ├── etcd-client-key.pem
│   └── etcd-client.pem
├── kubeconfig
├── stack-template.json
└── userdata
    ├── cloud-config-controller
    └── cloud-config-worker
```

These assets (templates and credentials) are used to create, update and interact with your Kubernetes cluster.


###Kubernetes Cluster Start Up

####Create the instances defined in the CloudFormation template

Now for the exciting part, creating your cluster:

```
$ kube-aws up --s3-uri s3://<your-bucket-name>/<prefix>
```

####Configure DNS

You can invoke `kube-aws status` to get the cluster API endpoint after cluster creation, if necessary. This command can take a while. And then dig the load balancer hostname to get the ip address, use this ip to setup an A record for your external dns name.

####Access the cluster

Once the API server is running, you should see:

```
$ kubectl --kubeconfig=kubeconfig get nodes
NAME                                       STATUS                     AGE
ip-10-0-0-xxx.us-west-1.compute.internal   Ready                      5m
ip-10-0-0-xxx.us-west-1.compute.internal   Ready                      5m
ip-10-0-0-xx.us-west-1.compute.internal    Ready,SchedulingDisabled   5m
```
313

314

315
###Setup PaddlePaddle Environment on AWS
316

317 318 319 320 321 322 323 324 325
Now, we've created a cluster with following network capability:

1. All Kubernetes nodes can communicate with each other.

1. All Docker containers on Kubernetes nodes can communicate with each other.

1. All Kubernetes nodes can communicate with all Docker containers on Kubernetes nodes.

1. All other traffic loads from outside of Kubernetes nodes cannot reach to the Docker containers on Kubernetes nodes except for creating the services for containers.
326

327 328 329 330

For sharing the training data across all the Kubernetes nodes, we use EFS (Elastic File System) in AWS. Ceph might be a better solution, but it requires high version of Linux kernel that might not be stable enough at this moment. We haven't automated the EFS setup at this moment, so please do the following steps:


Z
zhouti 已提交
331
1. Make sure you added AmazonElasticFileSystemFullAccess policy in your group.
332

333
1. Create the Elastic File System in AWS console, and attach the new VPC with it.
Z
zhouti 已提交
334 335
<img src="create_efs.png" width="800">

336 337

1. Modify the Kubernetes security group under ec2/Security Groups, add additional inbound policy "All TCP TCP 0 - 65535 0.0.0.0/0" for Kubernetes default VPC security group. 
Z
zhouti 已提交
338
<img src="add_security_group.png" width="800">
339 340 341


1. Follow the EC2 mount instruction to mount the disk onto all the Kubernetes nodes, we recommend to mount EFS disk onto ~/efs.
Z
zhouti 已提交
342
<img src="efs_mount.png" width="800">
343 344 345 346 347 348 349 350


Before starting the training, you should place your user config and divided training data onto EFS. When the training start, each task will copy related files from EFS into container, and it will also write the training results back onto EFS, we will show you how to place the data later in this article.



###Core Concept of PaddlePaddle Training on AWS

351
Now we've already setup a 3 nodes distributed Kubernetes cluster, and on each node we've attached the EFS volume, in this training demo, we will create three Kubernetes pod and scheduling them on 3 node. Each pod contains a PaddlePaddle container. When container gets created, it will start pserver and trainer process, load the training data from EFS volume and start the distributed training task.
352 353 354 355

####Use Kubernetes Job

We use Kubernetes job to represent one time of distributed training. After the job get finished, Kubernetes will destroy job container and release all related resources.
356

357
We can write a yaml file to describe the Kubernetes job. The file contains lots of configuration information, for example PaddlePaddle's node number, `paddle pserver` open port number, the network card info etc., these information are passed into container for processes to use as environment variables.
358

359
In one time of distributed training, user will confirm the PaddlePaddle node number first. And then upload the pre-divided training data and configuration file onth EFS volume. And then create the Kubernetes job yaml file; submit to the Kubernetes cluster to start the training job.
360

361 362
####Create PaddlePaddle Node

363
After Kubernetes master gets the request, it will parse the yaml file and create several pods (defined by PaddlePaddle's node number), Kubernetes will allocate these pods onto cluster's node. A pod represents a PaddlePaddle node, when pod is successfully allocated onto one physical/virtual machine, Kubernetes will startup the container in the pod, and this container will use the environment variables in yaml file and start up `paddle pserver` and `paddle trainer` processes.
364 365 366 367 368 369 370 371 372 373 374 375


####Start up Training

After container gets started, it starts up the distributed training by using scripts. We know `paddle train` process need to know other node's ip address and it's own trainer_id, since PaddlePaddle currently don't have the ability to do the service discovery, so in the start up script, each node will use job pod's name to query all to pod info from Kubernetes apiserver (apiserver's endpoint is an environment variable in container by default).

With pod information, we can assign each pod a unique trainer_id. Here we sort all the pods by pod's ip, and assign the index to each PaddlePaddle node as it's trainer_id. The workflow of starting up the script is as follows:

1. Query the api server to get pod information, and assign the trainer_id by sorting the ip.
1. Copy the training data from EFS sharing volume into container.
1. Parse the `paddle pserver` and 'paddle trainer' startup parameters from environment variables, and then start up the processes.
1. PaddlePaddle will automatically write the result onto the PaddlePaddle node with trainer_id:0, we set the output path to be the EFS volume to save the result data.
376 377 378 379


###Start PaddlePaddle Training Demo on AWS

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
Now we'll start a PaddlePaddle training demo on AWS, steps are as follows:

1. Build PaddlePaddle Docker image.
1. Divide the training data file and upload it onto the EFS sharing volume.
1. Create the training job yaml file, and start up the job.
1. Check the result after training.

####Build PaddlePaddle Docker Image

PaddlePaddle docker image need to provide the runtime environment for `paddle pserver` and `paddle train`, so the container use this image should have two main function:

1. Copy the training data into container.
1. Generate the startup parameter for `paddle pserver` and `paddle train` process, and startup the training.


Since official `paddledev/paddle:cpu-latest` have already included the PaddlePaddle binary, but lack of the above functionalities, so we will create the startup script based on this image, to achieve the work above. the detailed Dockerfile is as follows:
396 397

```
398 399 400 401 402 403 404
FROM paddledev/paddle:cpu-latest

MAINTAINER zjsxzong89@gmail.com

COPY start.sh /root/
COPY start_paddle.py /root/
CMD ["bash"," -c","/root/start.sh"]
405 406
```

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
At this point, we will copy our `start.sh` and `start_paddle.py` file into container, and then exec `start_paddle.py` script to start up the training, all the steps like assigning trainer_id, getting other nodes' ip are implemented in `start_paddle.py`.

`start_paddle.py` will start parsing the parameters.

```
parser = argparse.ArgumentParser(prog="start_paddle.py",
                                     description='simple tool for k8s')
    args, train_args_list = parser.parse_known_args()
    train_args = refine_unknown_args(train_args_list)
    train_args_dict = dict(zip(train_args[:-1:2], train_args[1::2]))
    podlist = getPodList()
```

And then using function `getPodList()` to query all the pod information from the job name through Kubernetes api server. When all the pods are in the running status, using `getIdMap(podlist)` to get the trainer_id.

```
    podlist = getPodList()
    # need to wait until all pods are running
    while not isPodAllRunning(podlist):
        time.sleep(10)
        podlist = getPodList()
    idMap = getIdMap(podlist)
```

In function `getIdMap(podlist)`, we use podlist to get the ip address for each pod and sort them, use the index as the trainer_id.

```
def getIdMap(podlist):
    '''
    generate tainer_id by ip
    '''
    ips = []
    for pod in podlist["items"]:
        ips.append(pod["status"]["podIP"])
    ips.sort()
    idMap = {}
    for i in range(len(ips)):
        idMap[ips[i]] = i
    return idMap
```

After getting `idMap`, we use function `startPaddle(idMap, train_args_dict)` to generate `paddle pserver` and `paddle train` start up parameters and then start up the processes.

In function `startPaddle`, the most important work is to generate `paddle pserver` and `paddle train` start up parameters. For example, `paddle train` parameter parsing, we will get parameters like `PADDLE_NIC`, `PADDLE_PORT`, `PADDLE_PORTS_NUM`, and get the `trainer_id` from `idMap`.

```
    program = 'paddle train'
    args = " --nics=" + PADDLE_NIC
    args += " --port=" + str(PADDLE_PORT)
    args += " --ports_num=" + str(PADDLE_PORTS_NUM)
    args += " --comment=" + "paddle_process_by_paddle"
    ip_string = ""
    for ip in idMap.keys():
        ip_string += (ip + ",")
    ip_string = ip_string.rstrip(",")
    args += " --pservers=" + ip_string
    args_ext = ""
    for key, value in train_args_dict.items():
        args_ext += (' --' + key + '=' + value)
    localIP = socket.gethostbyname(socket.gethostname())
    trainerId = idMap[localIP]
    args += " " + args_ext + " --trainer_id=" + \
        str(trainerId) + " --save_dir=" + JOB_PATH_OUTPUT
```

Use `docker build` to build toe Docker Image:

```
docker build -t your_repo/paddle:mypaddle .
```

And then push the built image onto docker registry.

```
docker push  your_repo/paddle:mypaddle
```

####Upload Training Data File

Here we will use PaddlePaddle's official recommendation demo as the content for this training, we put the training data file into a directory named by job name, which located in EFS sharing volume, the tree structure for the directory looks like:

```
efs
└── paddle-cluster-job
    ├── data
    │   ├── 0
    │   │
    │   ├── 1
    │   │
    │   └── 2
    ├── output
    └── recommendation
```

The `paddle-cluster-job` directory is the job name for this training, this training includes 3 PaddlePaddle node, we store the pre-divided data under `paddle-cluster-job/data` directory, directory 0, 1, 2 each represent 3 nodes' trainer_id. the training data in in recommendation directory, the training results and logs will be in the output directory.


####Create Kubernetes Job

Kubernetes use yaml file to describe job details, and then use command line tool to create the job in Kubernetes cluster.

In yaml file, we describe the Docker image we use for this training, the node number we need to startup, the volume mounting information and all the necessary parameters we need for `paddle pserver` and `paddle train` processes.

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
The yaml file content is as follows:

```
apiVersion: batch/v1
kind: Job
metadata:
  name: paddle-cluster-job
spec:
  parallelism: 3
  completions: 3
  template:
    metadata:
      name: paddle-cluster-job
    spec:
      volumes:
      - name: jobpath
        hostPath:
          path: /home/admin/efs
      containers:
      - name: trainer
        image: drinkcode/paddle:k8s-job
        command: ["bin/bash",  "-c", "/root/start.sh"]
        env:
        - name: JOB_NAME
          value: paddle-cluster-job
        - name: JOB_PATH
          value: /home/jobpath
        - name: JOB_NAMESPACE
          value: default
        - name: TRAIN_CONFIG_DIR
          value: recommendation
        - name: CONF_PADDLE_NIC
          value: eth0
        - name: CONF_PADDLE_PORT
          value: "7164"
        - name: CONF_PADDLE_PORTS_NUM
          value: "2"
        - name: CONF_PADDLE_PORTS_NUM_SPARSE
          value: "2"
        - name: CONF_PADDLE_GRADIENT_NUM
          value: "3"
        volumeMounts:
        - name: jobpath
          mountPath: /home/jobpath
        ports:
        - name: jobport
          hostPort: 30001
          containerPort: 30001
      restartPolicy: Never

```

562 563 564 565 566 567 568
In yaml file, the metadata's name is the job's name. `parallelism, completions` means this job will simultaneously start up 3 PaddlePaddle nodes, and this job will be finished when there are 3 finished pods. For the data store volume, we declare the path jobpath, it mount the /home/admin/efs on host machine into the container with path /home/jobpath. So in container, the /home/jobpath actually stores the data onto EFS sharing volume.

`env` field represents container's environment variables, we pass the PaddlePaddle parameters into containers by using the `env` field.

`JOB_PATH` represents the sharing volume path, `JOB_NAME` represents job name, `TRAIN_CONFIG_DIR` represents the training data file directory, we can these three parameters to get the file path for this training.

`CONF_PADDLE_NIC` represents `paddle pserver` process's `--nics` parameters, the NIC name.
569

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
`CONF_PADDLE_PORT` represents `paddle pserver` process's `--port` parameters, `CONF_PADDLE_PORTS_NUM` represents `--port_num` parameter.

`CONF_PADDLE_PORTS_NUM_SPARSE` represents the sparse updated port number, `--ports_num_for_sparse` parameter.

`CONF_PADDLE_GRADIENT_NUM` represents the training node number, `--num_gradient_servers` parameter.

After we create the yaml file, we can use Kubernetes command line tool to create the job onto the cluster.

```
kubectl create -f job.yaml
```

After we execute the above command, Kubernetes will create 3 pods and then pull the PaddlePaddle image, then start up the containers for training.



####Check Training Results

During the training, we can see the logs and models on EFS sharing volume, the output directory contains the training results. (Caution: node_0, node_1, node_2 directories represents PaddlePaddle node and train_id, not the Kubernetes node)

```
[root@paddle-kubernetes-node0 output]# tree -d
.
├── node_0
│   ├── server.log
│   └── train.log
├── node_1
│   ├── server.log
│   └── train.log
├── node_2
......
├── pass-00002
│   ├── done
│   ├── ___embedding_0__.w0
│   ├── ___embedding_1__.w0
......
```

We can always check the container training status through logs, for example:

```
[root@paddle-kubernetes-node0 node_0]# cat train.log
I1116 09:10:17.123121    50 Util.cpp:155] commandline:
 /usr/local/bin/../opt/paddle/bin/paddle_trainer
    --nics=eth0 --port=7164
    --ports_num=2 --comment=paddle_process_by_paddle
    --pservers=192.168.129.66,192.168.223.143,192.168.129.71
    --ports_num_for_sparse=2 --config=./trainer_config.py
    --trainer_count=4 --num_passes=10 --use_gpu=0 
    --log_period=50 --dot_period=10 --saving_period=1 
    --local=0 --trainer_id=0
    --save_dir=/home/jobpath/paddle-cluster-job/output
I1116 09:10:17.123440    50 Util.cpp:130] Calling runInitFunctions
I1116 09:10:17.123764    50 Util.cpp:143] Call runInitFunctions done.
[WARNING 2016-11-16 09:10:17,227 default_decorators.py:40] please use keyword arguments in paddle config.
[INFO 2016-11-16 09:10:17,239 networks.py:1282] The input order is [movie_id, title, genres, user_id, gender, age, occupation, rating]
[INFO 2016-11-16 09:10:17,239 networks.py:1289] The output order is [__regression_cost_0__]
I1116 09:10:17.392917    50 Trainer.cpp:170] trainer mode: Normal
I1116 09:10:17.613910    50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process
I1116 09:10:17.680917    50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process
I1116 09:10:17.681543    50 GradientMachine.cpp:134] Initing parameters..
I1116 09:10:18.012390    50 GradientMachine.cpp:141] Init parameters done.
I1116 09:10:18.018641    50 ParameterClient2.cpp:122] pserver 0 192.168.129.66:7164
I1116 09:10:18.018950    50 ParameterClient2.cpp:122] pserver 1 192.168.129.66:7165
I1116 09:10:18.019069    50 ParameterClient2.cpp:122] pserver 2 192.168.223.143:7164
I1116 09:10:18.019492    50 ParameterClient2.cpp:122] pserver 3 192.168.223.143:7165
I1116 09:10:18.019716    50 ParameterClient2.cpp:122] pserver 4 192.168.129.71:7164
I1116 09:10:18.019836    50 ParameterClient2.cpp:122] pserver 5 192.168.129.71:7165
```

640
It'll take around 8 hours to finish this PaddlePaddle recommendation training demo on three 2 core 8 GB EC2 machine (m3.large).
641 642 643


###Kubernetes Cluster Tear Down
644 645


Z
zhouti 已提交
646
If you want to tear down the whole Kubernetes cluster, make sure to *delete* the EFS volume first (otherwise, you will get stucked on following steps), and then use the following command:
647

648
```
649
kube-aws destroy
650
```
651 652 653 654
It's an async call, it might take 5 min to tear down the whole cluster.

If you created any Kubernetes Services of type LoadBalancer, you must delete these first, as the CloudFormation cannot be fully destroyed if any externally-managed resources still exist.

655 656


657
## For Experts with Kubernetes and AWS
658 659 660 661 662

Sometimes we might need to create or manage the cluster on AWS manually with limited privileges, so here we will explain more on what’s going on with the Kubernetes setup script.

### Some Presumptions

663 664 665
* Instances run on CoreOS, the official IAM.
* Kubernetes node use instance storage, no EBS get mounted.  Etcd is running on additional node.
* For networking, we use Flannel network at this moment, we will use Calico solution later on.
666
* When you create a service with Type=LoadBalancer, Kubernetes will create and ELB, and create a security group for the ELB.