SequenceReshapeLayer.cpp 4.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/utils/Logging.h"
#include "Layer.h"
#include "paddle/math/Matrix.h"
#include "paddle/utils/Stat.h"

namespace paddle {

/**
 * A layer for reshaping the sequence
 * Input: a sequence
 * Output: a sequence
 */

class SequenceReshapeLayer : public Layer {
protected:
  std::unique_ptr<Weight> biases_;

  MatrixPtr reshapedOutputGrad;

public:
  explicit SequenceReshapeLayer(const LayerConfig& config) : Layer(config) {}

  ~SequenceReshapeLayer() {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  void forward(PassType passType);
  void backward(const UpdateCallback& callback = nullptr);
};

REGISTER_LAYER(seqreshape, SequenceReshapeLayer);

bool SequenceReshapeLayer::init(const LayerMap& layerMap,
                                const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);

  CHECK_EQ(1U, inputLayers_.size());

  /* initialize biases_ */
  if (biasParameter_.get() != NULL) {
    biases_ = std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_));
  }
  setNeedSequenceInfo(false);
  return true;
}

void SequenceReshapeLayer::forward(PassType passType) {
  Layer::forward(passType);

  const Argument& input = getInput(0);

  size_t inDim = input.value->getWidth();
  size_t outDim = getSize();

  size_t numSequences = input.getNumSequences();
71
  auto startPositions = input.sequenceStartPositions->getVector(false);
Z
zhangjinchao01 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
  const int* starts = startPositions->getData();

  CHECK_EQ(starts[numSequences], input.getBatchSize());
  CHECK_EQ(numSequences, startPositions->getSize() - 1);

  for (size_t seqID = 0; seqID < numSequences; seqID++) {
    size_t inNumIns = starts[seqID + 1] - starts[seqID];
    size_t outNumIns = inNumIns * inDim / outDim;
    CHECK_EQ(outNumIns * outDim, inNumIns * inDim);
  }

  MatrixPtr inputValue = getInputValue(0);

  // reset output
  reserveOutput(inputValue->getHeight() * inDim / outDim, outDim);
  MatrixPtr outputValue = getOutputValue();

  {
    AsyncGpuBlock asyncGpuBlock;
    REGISTER_TIMER_INFO("SequenceReshapeLayerForward", getName().c_str());

    outputValue->copyFrom(*inputValue);

    // modify the sequenceStartPositions
    ICpuGpuVector::resizeOrCreate(
97
        output_.sequenceStartPositions, numSequences + 1, false);
Z
zhangjinchao01 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

    int* tgtBuf = output_.sequenceStartPositions->getMutableData(false);

    for (size_t seqId = 0; seqId < numSequences + 1; ++seqId) {
      tgtBuf[seqId] = starts[seqId] * inDim / outDim;
    }
  }

  if (biases_.get() != NULL) {
    MatrixPtr outV = getOutputValue();
    outV->addBias(*(biases_->getW()), 1);
  }

  /* activation */
  forwardActivation();
}

void SequenceReshapeLayer::backward(const UpdateCallback& callback) {
  /* activation */
  backwardActivation();

  if (biases_ && biases_->getWGrad()) {
    biases_->getWGrad()->collectBias(*getOutputGrad(), 1);

    // Increasing the number of gradient
    biases_->getParameterPtr()->incUpdate(callback);
  }

  MatrixPtr inputGrad = getInputGrad(0);
  MatrixPtr outputGrad = getOutputGrad();

  AsyncGpuBlock asyncGpuBlock;
  REGISTER_TIMER_INFO("SequenceReshapeLayerBackward", getName().c_str());

  if (inputGrad) {
133 134 135 136 137
    Matrix::resizeOrCreate(reshapedOutputGrad,
                           inputGrad->getHeight(),
                           inputGrad->getWidth(),
                           false,
                           useGpu_);
Z
zhangjinchao01 已提交
138 139 140 141 142 143
    reshapedOutputGrad->copyFrom(*outputGrad);
    inputGrad->add(*reshapedOutputGrad);
  }
}

}  // namespace paddle