LinearChainCRF.cpp 6.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <algorithm>
#include "LinearChainCRF.h"

namespace paddle {

LinearChainCRF::LinearChainCRF(int numClasses, real* para, real* grad)
    : numClasses_(numClasses) {
  a_ = Matrix::create(para, 1, numClasses_);
  b_ = Matrix::create(para + numClasses_, 1, numClasses_);
  w_ = Matrix::create(para + 2 * numClasses_, numClasses_, numClasses_);

  if (grad) {
    da_ = Matrix::create(grad, 1, numClasses_);
    db_ = Matrix::create(grad + numClasses_, 1, numClasses_);
    dw_ = Matrix::create(grad + 2 * numClasses_, numClasses_, numClasses_);
  }

  ones_ = Matrix::create(1, numClasses_);
  ones_->one();

  expW_ = Matrix::create(numClasses_, numClasses_);
}

// normalize x so that its sum is 1 and return the original sum;
static real normalizeL1(real* x, int n) {
  real sum = 0;
  for (int i = 0; i < n; ++i) {
    sum += x[i];
  }
  // Right now, we just bet that sum won't be zero. If this really happens,
  // we will figure out what should be done then.
  CHECK_GT(sum, 0);
  real s = 1 / sum;
  for (int i = 0; i < n; ++i) {
    x[i] *= s;
  }
  return sum;
}

real LinearChainCRF::forward(real* x, int* s, int length) {
  Matrix::resizeOrCreate(maxX_, length, 1);
  Matrix::resizeOrCreate(expX_, length, numClasses_);
  Matrix::resizeOrCreate(alpha_, length, numClasses_);
  MatrixPtr matX = Matrix::create(x, length, numClasses_);
  matX->rowMax(*maxX_);
  expX_->assign(*matX);
  // subtract max to avoid overflow or underflow
  expX_->mul(maxX_, ones_, (real)-1, (real)1);
H
hedaoyuan 已提交
63
  expX_->exp2();
Z
zhangjinchao01 已提交
64 65 66 67 68 69 70 71

  real* a = a_->getData();
  real* b = b_->getData();
  real* w = w_->getData();
  real* alpha = alpha_->getData();
  real* expX = expX_->getData();
  real* maxX = maxX_->getData();

H
hedaoyuan 已提交
72
  expW_->exp2(*w_);
Z
zhangjinchao01 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
  real* expW = expW_->getData();

  for (int i = 0; i < numClasses_; ++i) {
    alpha[i] = exp(a[i]) * expX[i];
  }
  real ll = -maxX[0] - log(normalizeL1(alpha, numClasses_));

  for (int k = 1; k < length; ++k) {
    for (int i = 0; i < numClasses_; ++i) {
      real sum = 0;
      for (int j = 0; j < numClasses_; ++j) {
        sum += alpha[(k - 1) * numClasses_ + j]  // (*)
               * expW[j * numClasses_ + i];
      }
      alpha[k * numClasses_ + i] = expX[k * numClasses_ + i] * sum;
    }
    // normalizeL1 is to avoid underflow or overflow at (*)
    ll -= maxX[k] + log(normalizeL1(alpha + k * numClasses_, numClasses_));
  }
  real sum = 0;
  for (int i = 0; i < numClasses_; ++i) {
    sum += alpha[(length - 1) * numClasses_ + i] * exp(b[i]);
  }
  ll -= log(sum);
  // Now ll is equal to -log(Z)

  CHECK_LT(*std::max_element(s, s + length), numClasses_);
  // Calculate the nominator part, which depends on s
  ll += a[s[0]] + x[s[0]] + b[s[length - 1]];
  for (int k = 1; k < length; ++k) {
    ll += x[k * numClasses_ + s[k]] + w[s[k - 1] * numClasses_ + s[k]];
  }

  VLOG(1) << "ll=" << ll;
  return -ll;
}

void LinearChainCRF::backward(real* x, real* dx, int* s, int length) {
  MatrixPtr matX = Matrix::create(x, length, numClasses_);
  MatrixPtr matDX = Matrix::create(dx, length, numClasses_);
  MatrixPtr matGrad = Matrix::create(length, numClasses_);
  Matrix::resizeOrCreate(beta_, length, numClasses_);
  real* b = b_->getData();
  real* dw = dw_ ? dw_->getData() : nullptr;

  real* alpha = alpha_->getData();
  real* beta = beta_->getData();
  real* expW = expW_->getData();
  real* expX = expX_->getData();
  real* grad = matGrad->getData();

  for (int i = 0; i < numClasses_; ++i) {
    beta[(length - 1) * numClasses_ + i] = exp(b[i]);
  }
  normalizeL1(beta + (length - 1) * numClasses_, numClasses_);

  for (int k = length - 2; k >= 0; --k) {
    for (int i = 0; i < numClasses_; ++i) {
      real sum = 0;
      for (int j = 0; j < numClasses_; ++j) {
        sum += expW[i * numClasses_ + j]  // (**)
               * beta[(k + 1) * numClasses_ + j] *
               expX[(k + 1) * numClasses_ + j];
      }
      beta[k * numClasses_ + i] = sum;
    }
    // normalizeL1 is to avoid underflow or overflow at (**)
    normalizeL1(beta + k * numClasses_, numClasses_);
  }

  matGrad->dotMul(*alpha_, *beta_);
  matGrad->rowNormalizeL1(*matGrad);
  for (int k = 0; k < length; ++k) {
    grad[k * numClasses_ + s[k]] -= (real)1;
  }
  matDX->add(*matGrad);
  if (da_) {
    da_->add(*matGrad->subMatrix(/* startRow= */ 0, /* numRows= */ 1));
  }
  if (db_) {
    db_->add(*matGrad->subMatrix(/* startRow= */ length - 1, 1));
  }

  beta_->dotMul(*beta_, *expX_);
  beta_->rowNormalizeL1(*beta_);

  for (int k = 1; dw && k < length; ++k) {
    real sum = 0;
    for (int i = 0; i < numClasses_; ++i) {
      for (int j = 0; j < numClasses_; ++j) {
        sum += expW[i * numClasses_ + j] * alpha[(k - 1) * numClasses_ + i] *
               beta[k * numClasses_ + j];
      }
    }
    sum = 1 / sum;
    for (int i = 0; i < numClasses_; ++i) {
      for (int j = 0; j < numClasses_; ++j) {
        dw[i * numClasses_ + j] += sum * expW[i * numClasses_ + j] *
                                   alpha[(k - 1) * numClasses_ + i] *
                                   beta[k * numClasses_ + j];
      }
    }
    dw[s[k - 1] * numClasses_ + s[k]] -= (real)1;
  }
}

void LinearChainCRF::decode(real* x, int* s, int length) {
  Matrix::resizeOrCreate(alpha_, length, numClasses_);
  real* a = a_->getData();
  real* b = b_->getData();
  real* w = w_->getData();
  IVector::resizeOrCreate(track_, numClasses_ * length, /* useGpu= */ false);
  int* track = track_->getData();
  real* alpha = alpha_->getData();

  for (int i = 0; i < numClasses_; ++i) {
    alpha[i] = a[i] + x[i];
  }
  for (int k = 1; k < length; ++k) {
    for (int i = 0; i < numClasses_; ++i) {
      real maxScore = -std::numeric_limits<real>::max();
      int maxJ = 0;
      for (int j = 0; j < numClasses_; ++j) {
        real score = alpha[(k - 1) * numClasses_ + j] + w[j * numClasses_ + i];
        if (score > maxScore) {
          maxScore = score;
          maxJ = j;
        }
      }
      alpha[k * numClasses_ + i] = maxScore + x[k * numClasses_ + i];
      track[k * numClasses_ + i] = maxJ;
    }
  }
  real maxScore = -std::numeric_limits<real>::max();
  int maxI = 0;
  for (int i = 0; i < numClasses_; ++i) {
    real score = alpha[(length - 1) * numClasses_ + i] + b[i];
    if (score > maxScore) {
      maxScore = score;
      maxI = i;
    }
  }
  s[length - 1] = maxI;
  for (int k = length - 1; k >= 1; --k) {
    s[k - 1] = maxI = track[k * numClasses_ + maxI];
  }
}

}  // namespace paddle