trainer_config.py 3.2 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer_config_helpers import *

try:
    import cPickle as pickle
except ImportError:
    import pickle

is_predict = get_config_arg('is_predict', bool, False)

META_FILE = 'data/meta.bin'

with open(META_FILE, 'rb') as f:
    # load meta file
    meta = pickle.load(f)

30 31
settings(
    batch_size=1600, learning_rate=1e-3, learning_method=RMSPropOptimizer())
Z
zhangjinchao01 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61


def construct_feature(name):
    """
    Construct movie/user features.

    This method read from meta data. Then convert feature to neural network due
    to feature type. The map relation as follow.

    * id: embedding => fc
    * embedding:
        is_sequence:  embedding => context_projection => fc => pool
        not sequence: embedding => fc
    * one_hot_dense:  fc => fc

    Then gather all features vector, and use a fc layer to combined them as
    return.

    :param name: 'movie' or 'user'
    :type name: basestring
    :return: combined feature output
    :rtype: LayerOutput
    """
    __meta__ = meta[name]['__meta__']['raw_meta']
    fusion = []
    for each_meta in __meta__:
        type_name = each_meta['type']
        slot_name = each_meta.get('name', '%s_id' % name)
        if type_name == 'id':
            slot_dim = each_meta['max']
62 63 64 65
            embedding = embedding_layer(
                input=data_layer(
                    slot_name, size=slot_dim), size=256)
            fusion.append(fc_layer(input=embedding, size=256))
Z
zhangjinchao01 已提交
66 67 68 69 70 71 72
        elif type_name == 'embedding':
            is_seq = each_meta['seq'] == 'sequence'
            slot_dim = len(each_meta['dict'])
            din = data_layer(slot_name, slot_dim)
            embedding = embedding_layer(input=din, size=256)
            if is_seq:
                fusion.append(
73 74
                    text_conv_pool(
                        input=embedding, context_len=5, hidden_size=256))
Z
zhangjinchao01 已提交
75
            else:
76
                fusion.append(fc_layer(input=embedding, size=256))
Z
zhangjinchao01 已提交
77 78
        elif type_name == 'one_hot_dense':
            slot_dim = len(each_meta['dict'])
79 80
            hidden = fc_layer(input=data_layer(slot_name, slot_dim), size=256)
            fusion.append(fc_layer(input=hidden, size=256))
Z
zhangjinchao01 已提交
81 82 83 84 85 86 87 88

    return fc_layer(name="%s_fusion" % name, input=fusion, size=256)


movie_feature = construct_feature("movie")
user_feature = construct_feature("user")
similarity = cos_sim(a=movie_feature, b=user_feature)
if not is_predict:
89 90 91 92 93 94 95 96 97 98 99
    outputs(
        regression_cost(
            input=similarity, label=data_layer(
                'rating', size=1)))

    define_py_data_sources2(
        'data/train.list',
        'data/test.list',
        module='dataprovider',
        obj='process',
        args={'meta': meta})
Z
zhangjinchao01 已提交
100 101
else:
    outputs(similarity)