trainer_config.bidi-lstm.py 2.0 KB
Newer Older
1 2
# edit-mode: -*- python -*-

3
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer_config_helpers import *

dict_file = "./data/dict.txt"
word_dict = dict()
with open(dict_file, 'r') as f:
    for i, line in enumerate(f):
        w = line.strip().split()[0]
        word_dict[w] = i

is_predict = get_config_arg('is_predict', bool, False)
trn = 'data/train.list' if not is_predict else None
tst = 'data/test.list' if not is_predict else 'data/pred.list'
process = 'process' if not is_predict else 'process_predict'
30 31 32 33 34 35
define_py_data_sources2(
    train_list=trn,
    test_list=tst,
    module="dataprovider_emb",
    obj=process,
    args={"dictionary": word_dict})
36 37 38 39 40 41 42

batch_size = 128 if not is_predict else 1
settings(
    batch_size=batch_size,
    learning_rate=2e-3,
    learning_method=AdamOptimizer(),
    regularization=L2Regularization(8e-4),
43
    gradient_clipping_threshold=25)
44

45
bias_attr = ParamAttr(initial_std=0., l2_rate=0.)
46 47 48 49 50 51
data = data_layer(name="word", size=len(word_dict))
emb = embedding_layer(input=data, size=128)

bi_lstm = bidirectional_lstm(input=emb, size=128)
dropout = dropout_layer(input=bi_lstm, dropout_rate=0.5)

52 53
output = fc_layer(
    input=dropout, size=2, bias_attr=bias_attr, act=SoftmaxActivation())
54 55 56 57 58 59 60 61

if is_predict:
    maxid = maxid_layer(output)
    outputs([maxid, output])
else:
    label = data_layer(name="label", size=2)
    cls = classification_cost(input=output, label=label)
    outputs(cls)