process_cifar.py 2.7 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import sys
import os
import PIL.Image as Image
"""
  Usage: python process_cifar input_dir output_dir
"""


def mkdir_not_exist(path):
    """
    Make dir if the path does not exist.
    path: the path to be created.
    """
    if not os.path.exists(path):
        os.mkdir(path)

32

Z
zhangjinchao01 已提交
33 34 35 36 37 38 39 40 41
def create_dir_structure(output_dir):
    """
    Create the directory structure for the directory.
    output_dir: the direcotry structure path.
    """
    mkdir_not_exist(os.path.join(output_dir))
    mkdir_not_exist(os.path.join(output_dir, "train"))
    mkdir_not_exist(os.path.join(output_dir, "test"))

42 43

def convert_batch(batch_path, label_set, label_map, output_dir, data_split):
Z
zhangjinchao01 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    """
    Convert CIFAR batch to the structure of Paddle format.
    batch_path: the batch to be converted.
    label_set: the set of labels.
    output_dir: the output path.
    data_split: whether it is training or testing data.
    """
    data = np.load(batch_path)
    for data, label, filename in zip(data['data'], data['labels'],
                                     data['filenames']):
        data = data.reshape((3, 32, 32))
        data = np.transpose(data, (1, 2, 0))
        label = label_map[label]
        output_dir_this = os.path.join(output_dir, data_split, str(label))
        output_filename = os.path.join(output_dir_this, filename)
        if not label in label_set:
            label_set[label] = True
            mkdir_not_exist(output_dir_this)
        Image.fromarray(data).save(output_filename)


if __name__ == '__main__':
    input_dir = sys.argv[1]
    output_dir = sys.argv[2]
    num_batch = 5
    create_dir_structure(output_dir)
70 71 72 73 74 75 76 77 78 79 80 81
    label_map = {
        0: "airplane",
        1: "automobile",
        2: "bird",
        3: "cat",
        4: "deer",
        5: "dog",
        6: "frog",
        7: "horse",
        8: "ship",
        9: "truck"
    }
Z
zhangjinchao01 已提交
82 83
    labels = {}
    for i in range(1, num_batch + 1):
84 85 86 87 88 89
        convert_batch(
            os.path.join(input_dir, "data_batch_%d" % i), labels, label_map,
            output_dir, "train")
    convert_batch(
        os.path.join(input_dir, "test_batch"), {}, label_map, output_dir,
        "test")