test_conv3d_transpose_op.py 5.4 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5
import unittest
import numpy as np
from op_test import OpTest


C
chengduoZH 已提交
6
def conv3dtranspose_forward_naive(input_, filter_, attrs):
C
chengduoZH 已提交
7 8 9 10
    in_n, in_c, in_d, in_h, in_w = input_.shape
    f_c, out_c, f_d, f_h, f_w = filter_.shape
    assert in_c == f_c

C
chengduoZH 已提交
11 12 13 14 15 16 17 18 19
    stride, pad, dilations = attrs['strides'], attrs['paddings'], attrs[
        'dilations']

    d_bolck_d = dilations[0] * (f_d - 1) + 1
    d_bolck_h = dilations[1] * (f_h - 1) + 1
    d_bolck_w = dilations[2] * (f_w - 1) + 1
    out_d = (in_d - 1) * stride[0] + d_bolck_d
    out_h = (in_h - 1) * stride[1] + d_bolck_h
    out_w = (in_w - 1) * stride[2] + d_bolck_w
C
chengduoZH 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32
    out = np.zeros((in_n, out_c, out_d, out_h, out_w))

    for n in range(in_n):
        for d in range(in_d):
            for i in range(in_h):
                for j in range(in_w):
                    input_masked = input_[n, :, d, i, j]  # (c)
                    input_masked = np.reshape(input_masked, (in_c, 1, 1, 1))
                    input_masked = np.tile(input_masked, (1, f_d, f_h, f_w))

                    for k in range(out_c):
                        tmp_out = np.sum(input_masked * filter_[:, k, :, :, :],
                                         axis=0)
C
chengduoZH 已提交
33 34 35 36 37
                        d1, d2 = d * stride[0], d * stride[0] + d_bolck_d
                        i1, i2 = i * stride[1], i * stride[1] + d_bolck_h
                        j1, j2 = j * stride[2], j * stride[2] + d_bolck_w
                        out[n, k, d1:d2:dilations[0], i1:i2:dilations[1], j1:j2:
                            dilations[2]] += tmp_out
C
chengduoZH 已提交
38

C
chengduoZH 已提交
39 40
    out = out[:, :, pad[0]:out_d - pad[0], pad[1]:out_h - pad[1], pad[2]:out_w -
              pad[2]]
C
chengduoZH 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    return out


class TestConv3dTransposeOp(OpTest):
    def setUp(self):
        # init as conv transpose
        self.init_op_type()
        self.init_test_case()

        input_ = np.random.random(self.input_size).astype("float32")
        filter_ = np.random.random(self.filter_size).astype("float32")

        self.inputs = {'Input': input_, 'Filter': filter_}
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
C
chengduoZH 已提交
57
            'dilations': self.dilations
C
chengduoZH 已提交
58
        }
C
chengduoZH 已提交
59 60 61 62

        output = conv3dtranspose_forward_naive(input_, filter_,
                                               self.attrs).astype("float32")

C
chengduoZH 已提交
63 64 65 66 67 68 69
        self.outputs = {'Output': output}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(
C
chengduoZH 已提交
70
            set(['Input', 'Filter']), 'Output', max_relative_error=0.02)
C
chengduoZH 已提交
71 72 73 74 75

    def test_check_grad_no_filter(self):
        self.check_grad(
            ['Input'],
            'Output',
C
chengduoZH 已提交
76
            max_relative_error=0.02,
C
chengduoZH 已提交
77 78 79 80 81 82
            no_grad_set=set(['Filter']))

    def test_check_grad_no_input(self):
        self.check_grad(
            ['Filter'],
            'Output',
C
chengduoZH 已提交
83
            max_relative_error=0.02,
C
chengduoZH 已提交
84 85 86 87 88 89
            no_grad_set=set(['Input']))

    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
C
chengduoZH 已提交
90
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
C
chengduoZH 已提交
91 92 93 94
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]

    def init_op_type(self):
C
chengduoZH 已提交
95
        self.op_type = "conv3d_transpose"
C
chengduoZH 已提交
96 97


C
chengduoZH 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
class TestWithPad(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]


class TestWithStride(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [2, 2, 2]
        self.dilations = [1, 1, 1]
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]


C
chengduoZH 已提交
118 119 120 121 122 123 124 125 126 127
class TestWithDilation(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [2, 2, 2]
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]


C
chengduoZH 已提交
128 129 130 131 132 133
# ------------ test_cudnn ------------
class TestCudnn(TestConv3dTransposeOp):
    def init_op_type(self):
        self.op_type = "conv3d_transpose_cudnn"


C
chengduoZH 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
class TestCudnnWithPad(TestWithPad):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]

    def init_op_type(self):
        self.op_type = "conv3d_transpose_cudnn"


class TestCudnnWithStride(TestWithStride):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [2, 2, 2]
        self.dilations = [1, 1, 1]
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]

    def init_op_type(self):
        self.op_type = "conv3d_transpose_cudnn"


# #cudnn v5 does not support dilation conv.
# class TestCudnnWithDilation(TestWithDilation):
#     def init_test_case(self):
#         self.pad = [1, 1, 1]
#         self.stride = [2, 2, 2]
#         self.dilations = [2, 2, 2]
#         self.input_size = [2, 3, 5, 5, 5]  # NCDHW
#         f_c = self.input_size[1]
#         self.filter_size = [f_c, 6, 3, 3, 3]
#
#     def init_op_type(self):
#         self.op_type = "conv3d_transpose_cudnn"

C
chengduoZH 已提交
173 174
if __name__ == '__main__':
    unittest.main()